Update LFNA
This commit is contained in:
parent
b81ef2dd74
commit
72f240bf0a
@ -1,239 +0,0 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
|
||||
#####################################################
|
||||
# python exps/LFNA/lfna-fix-init.py --env_version v1 --hidden_dim 16
|
||||
#####################################################
|
||||
import sys, time, copy, torch, random, argparse
|
||||
from tqdm import tqdm
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
|
||||
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
|
||||
if str(lib_dir) not in sys.path:
|
||||
sys.path.insert(0, str(lib_dir))
|
||||
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint
|
||||
from log_utils import time_string
|
||||
from log_utils import AverageMeter, convert_secs2time
|
||||
|
||||
from utils import split_str2indexes
|
||||
|
||||
from procedures.advanced_main import basic_train_fn, basic_eval_fn
|
||||
from procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric
|
||||
from datasets.synthetic_core import get_synthetic_env
|
||||
from models.xcore import get_model
|
||||
from xlayers import super_core
|
||||
|
||||
|
||||
from lfna_utils import lfna_setup, train_model, TimeData
|
||||
|
||||
|
||||
class LFNAmlp:
|
||||
"""A LFNA meta-model that uses the MLP as delta-net."""
|
||||
|
||||
def __init__(self, obs_dim, hidden_sizes, act_name, criterion):
|
||||
self.delta_net = super_core.SuperSequential(
|
||||
super_core.SuperLinear(obs_dim, hidden_sizes[0]),
|
||||
super_core.super_name2activation[act_name](),
|
||||
super_core.SuperLinear(hidden_sizes[0], hidden_sizes[1]),
|
||||
super_core.super_name2activation[act_name](),
|
||||
super_core.SuperLinear(hidden_sizes[1], 1),
|
||||
)
|
||||
self.meta_optimizer = torch.optim.Adam(
|
||||
self.delta_net.parameters(), lr=0.001, amsgrad=True
|
||||
)
|
||||
self.criterion = criterion
|
||||
|
||||
def adapt(self, model, seq_datasets):
|
||||
delta_inputs = []
|
||||
container = model.get_w_container()
|
||||
for iseq, dataset in enumerate(seq_datasets):
|
||||
y_hat = model.forward_with_container(dataset.x, container)
|
||||
loss = self.criterion(y_hat, dataset.y)
|
||||
gradients = torch.autograd.grad(loss, container.parameters())
|
||||
with torch.no_grad():
|
||||
flatten_g = container.flatten(gradients)
|
||||
delta_inputs.append(flatten_g)
|
||||
flatten_w = container.no_grad_clone().flatten()
|
||||
delta_inputs.append(flatten_w)
|
||||
delta_inputs = torch.stack(delta_inputs, dim=-1)
|
||||
delta = self.delta_net(delta_inputs)
|
||||
|
||||
delta = torch.clamp(delta, -0.8, 0.8)
|
||||
unflatten_delta = container.unflatten(delta)
|
||||
future_container = container.no_grad_clone().additive(unflatten_delta)
|
||||
return future_container
|
||||
|
||||
def step(self):
|
||||
torch.nn.utils.clip_grad_norm_(self.delta_net.parameters(), 1.0)
|
||||
self.meta_optimizer.step()
|
||||
|
||||
def zero_grad(self):
|
||||
self.meta_optimizer.zero_grad()
|
||||
self.delta_net.zero_grad()
|
||||
|
||||
def state_dict(self):
|
||||
return dict(
|
||||
delta_net=self.delta_net.state_dict(),
|
||||
meta_optimizer=self.meta_optimizer.state_dict(),
|
||||
)
|
||||
|
||||
|
||||
def main(args):
|
||||
logger, env_info, model_kwargs = lfna_setup(args)
|
||||
dynamic_env = env_info["dynamic_env"]
|
||||
model = get_model(dict(model_type="simple_mlp"), **model_kwargs)
|
||||
|
||||
total_time = env_info["total"]
|
||||
for i in range(total_time):
|
||||
for xkey in ("timestamp", "x", "y"):
|
||||
nkey = "{:}-{:}".format(i, xkey)
|
||||
assert nkey in env_info, "{:} no in {:}".format(nkey, list(env_info.keys()))
|
||||
train_time_bar = total_time // 2
|
||||
network = get_model(dict(model_type="simple_mlp"), **model_kwargs)
|
||||
|
||||
criterion = torch.nn.MSELoss()
|
||||
logger.log("There are {:} weights.".format(network.get_w_container().numel()))
|
||||
|
||||
adaptor = LFNAmlp(1 + args.meta_seq, (20, 20), "leaky_relu", criterion)
|
||||
|
||||
# pre-train the model
|
||||
init_dataset = TimeData(0, env_info["0-x"], env_info["0-y"])
|
||||
init_loss = train_model(network, init_dataset, args.init_lr, args.epochs)
|
||||
logger.log("The pre-training loss is {:.4f}".format(init_loss))
|
||||
|
||||
# LFNA meta-training
|
||||
meta_loss_meter = AverageMeter()
|
||||
per_epoch_time, start_time = AverageMeter(), time.time()
|
||||
for iepoch in range(args.epochs):
|
||||
|
||||
need_time = "Time Left: {:}".format(
|
||||
convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True)
|
||||
)
|
||||
logger.log(
|
||||
"[{:}] [{:04d}/{:04d}] ".format(time_string(), iepoch, args.epochs)
|
||||
+ need_time
|
||||
)
|
||||
|
||||
adaptor.zero_grad()
|
||||
|
||||
batch_indexes, meta_losses = [], []
|
||||
for ibatch in range(args.meta_batch):
|
||||
sampled_timestamp = random.random() * train_time_bar
|
||||
batch_indexes.append("{:.3f}".format(sampled_timestamp))
|
||||
seq_datasets = []
|
||||
for iseq in range(args.meta_seq + 1):
|
||||
cur_time = sampled_timestamp + iseq * dynamic_env.timestamp_interval
|
||||
cur_time, (x, y) = dynamic_env(cur_time)
|
||||
seq_datasets.append(TimeData(cur_time, x, y))
|
||||
history_datasets, future_dataset = seq_datasets[:-1], seq_datasets[-1]
|
||||
future_container = adaptor.adapt(network, history_datasets)
|
||||
future_y_hat = network.forward_with_container(
|
||||
future_dataset.x, future_container
|
||||
)
|
||||
future_loss = adaptor.criterion(future_y_hat, future_dataset.y)
|
||||
meta_losses.append(future_loss)
|
||||
meta_loss = torch.stack(meta_losses).mean()
|
||||
meta_loss.backward()
|
||||
adaptor.step()
|
||||
|
||||
meta_loss_meter.update(meta_loss.item())
|
||||
|
||||
logger.log(
|
||||
"meta-loss: {:.4f} ({:.4f}) batch: {:}".format(
|
||||
meta_loss_meter.avg, meta_loss_meter.val, ",".join(batch_indexes[:5])
|
||||
)
|
||||
)
|
||||
if iepoch % 200 == 0:
|
||||
save_checkpoint(
|
||||
{"adaptor": adaptor.state_dict(), "iepoch": iepoch},
|
||||
logger.path("model"),
|
||||
logger,
|
||||
)
|
||||
per_epoch_time.update(time.time() - start_time)
|
||||
start_time = time.time()
|
||||
|
||||
w_container_per_epoch = dict()
|
||||
for idx in range(1, env_info["total"]):
|
||||
future_time = env_info["{:}-timestamp".format(idx)]
|
||||
future_x = env_info["{:}-x".format(idx)]
|
||||
future_y = env_info["{:}-y".format(idx)]
|
||||
seq_datasets = []
|
||||
for iseq in range(1, args.meta_seq + 1):
|
||||
cur_time = future_time - iseq * dynamic_env.timestamp_interval
|
||||
cur_time, (x, y) = dynamic_env(cur_time)
|
||||
seq_datasets.append(TimeData(cur_time, x, y))
|
||||
seq_datasets.reverse()
|
||||
future_container = adaptor.adapt(network, seq_datasets)
|
||||
w_container_per_epoch[idx] = future_container.no_grad_clone()
|
||||
with torch.no_grad():
|
||||
future_y_hat = network.forward_with_container(
|
||||
future_x, w_container_per_epoch[idx]
|
||||
)
|
||||
future_loss = adaptor.criterion(future_y_hat, future_y)
|
||||
logger.log("meta-test: [{:03d}] -> loss={:.4f}".format(idx, future_loss.item()))
|
||||
|
||||
save_checkpoint(
|
||||
{"w_container_per_epoch": w_container_per_epoch},
|
||||
logger.path(None) / "final-ckp.pth",
|
||||
logger,
|
||||
)
|
||||
|
||||
logger.log("-" * 200 + "\n")
|
||||
logger.close()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser("Use the data in the past.")
|
||||
parser.add_argument(
|
||||
"--save_dir",
|
||||
type=str,
|
||||
default="./outputs/lfna-synthetic/lfna-fix-init",
|
||||
help="The checkpoint directory.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--env_version",
|
||||
type=str,
|
||||
required=True,
|
||||
help="The synthetic enviornment version.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--hidden_dim",
|
||||
type=int,
|
||||
required=True,
|
||||
help="The hidden dimension.",
|
||||
)
|
||||
#####
|
||||
parser.add_argument(
|
||||
"--init_lr",
|
||||
type=float,
|
||||
default=0.1,
|
||||
help="The initial learning rate for the optimizer (default is Adam)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--meta_batch",
|
||||
type=int,
|
||||
default=32,
|
||||
help="The batch size for the meta-model",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--meta_seq",
|
||||
type=int,
|
||||
default=10,
|
||||
help="The length of the sequence for meta-model.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--epochs",
|
||||
type=int,
|
||||
default=1000,
|
||||
help="The total number of epochs.",
|
||||
)
|
||||
# Random Seed
|
||||
parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")
|
||||
args = parser.parse_args()
|
||||
if args.rand_seed is None or args.rand_seed < 0:
|
||||
args.rand_seed = random.randint(1, 100000)
|
||||
assert args.save_dir is not None, "The save dir argument can not be None"
|
||||
args.save_dir = "{:}-{:}-d{:}".format(
|
||||
args.save_dir, args.env_version, args.hidden_dim
|
||||
)
|
||||
main(args)
|
@ -1,239 +0,0 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
|
||||
#####################################################
|
||||
# python exps/LFNA/lfna-test-hpnet.py --env_version v1 --hidden_dim 16 --layer_dim 16 --epochs 10000 --init_lr 0.01
|
||||
# python exps/LFNA/lfna-test-hpnet.py --env_version v1 --hidden_dim 16 --layer_dim 16 --epochs 10000 --init_lr 0.01 --device cuda
|
||||
#####################################################
|
||||
import sys, time, copy, torch, random, argparse
|
||||
from tqdm import tqdm
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
|
||||
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
|
||||
if str(lib_dir) not in sys.path:
|
||||
sys.path.insert(0, str(lib_dir))
|
||||
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint
|
||||
from log_utils import time_string
|
||||
from log_utils import AverageMeter, convert_secs2time
|
||||
|
||||
from utils import split_str2indexes
|
||||
|
||||
from procedures.advanced_main import basic_train_fn, basic_eval_fn
|
||||
from procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric
|
||||
from datasets.synthetic_core import get_synthetic_env
|
||||
from models.xcore import get_model
|
||||
from xlayers import super_core, trunc_normal_
|
||||
|
||||
|
||||
from lfna_utils import lfna_setup, train_model, TimeData
|
||||
|
||||
# from lfna_models import HyperNet_VX as HyperNet
|
||||
from lfna_models import HyperNet
|
||||
|
||||
|
||||
def main(args):
|
||||
logger, env_info, model_kwargs = lfna_setup(args)
|
||||
dynamic_env = env_info["dynamic_env"]
|
||||
model = get_model(**model_kwargs)
|
||||
model = model.to(args.device)
|
||||
criterion = torch.nn.MSELoss()
|
||||
|
||||
shape_container = model.get_w_container().to_shape_container()
|
||||
total_bar = 100
|
||||
hypernet = HyperNet(shape_container, args.layer_dim, args.task_dim, total_bar)
|
||||
hypernet = hypernet.to(args.device)
|
||||
|
||||
logger.log(
|
||||
"{:} There are {:} weights in the base-model.".format(
|
||||
time_string(), model.numel()
|
||||
)
|
||||
)
|
||||
logger.log(
|
||||
"{:} There are {:} weights in the meta-model.".format(
|
||||
time_string(), hypernet.numel()
|
||||
)
|
||||
)
|
||||
for i in range(total_bar):
|
||||
env_info["{:}-x".format(i)] = env_info["{:}-x".format(i)].to(args.device)
|
||||
env_info["{:}-y".format(i)] = env_info["{:}-y".format(i)].to(args.device)
|
||||
|
||||
model.train()
|
||||
hypernet.train()
|
||||
|
||||
optimizer = torch.optim.Adam(
|
||||
hypernet.parameters(), lr=args.init_lr, weight_decay=1e-5, amsgrad=True
|
||||
)
|
||||
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
|
||||
optimizer,
|
||||
milestones=[
|
||||
int(args.epochs * 0.8),
|
||||
int(args.epochs * 0.9),
|
||||
],
|
||||
gamma=0.1,
|
||||
)
|
||||
|
||||
# total_bar = env_info["total"] - 1
|
||||
# LFNA meta-training
|
||||
loss_meter = AverageMeter()
|
||||
per_epoch_time, start_time = AverageMeter(), time.time()
|
||||
last_success = 0
|
||||
for iepoch in range(args.epochs):
|
||||
|
||||
need_time = "Time Left: {:}".format(
|
||||
convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True)
|
||||
)
|
||||
head_str = (
|
||||
"[{:}] [{:04d}/{:04d}] ".format(time_string(), iepoch, args.epochs)
|
||||
+ need_time
|
||||
)
|
||||
|
||||
losses = []
|
||||
# for ibatch in range(args.meta_batch):
|
||||
for cur_time in range(total_bar):
|
||||
# cur_time = random.randint(0, total_bar)
|
||||
# cur_task_embed = task_embeds[cur_time]
|
||||
cur_container = hypernet(cur_time)
|
||||
cur_x = env_info["{:}-x".format(cur_time)]
|
||||
cur_y = env_info["{:}-y".format(cur_time)]
|
||||
cur_dataset = TimeData(cur_time, cur_x, cur_y)
|
||||
|
||||
preds = model.forward_with_container(cur_dataset.x, cur_container)
|
||||
optimizer.zero_grad()
|
||||
loss = criterion(preds, cur_dataset.y)
|
||||
|
||||
losses.append(loss)
|
||||
|
||||
final_loss = torch.stack(losses).mean()
|
||||
final_loss.backward()
|
||||
optimizer.step()
|
||||
lr_scheduler.step()
|
||||
|
||||
loss_meter.update(final_loss.item())
|
||||
success, best_score = hypernet.save_best(-loss_meter.val)
|
||||
if success:
|
||||
logger.log("Achieve the best with best_score = {:.3f}".format(best_score))
|
||||
last_success = iepoch
|
||||
if iepoch - last_success >= args.early_stop_thresh:
|
||||
logger.log("Early stop at {:}".format(iepoch))
|
||||
break
|
||||
if iepoch % 20 == 0:
|
||||
logger.log(
|
||||
head_str
|
||||
+ " meta-loss: {:.4f} ({:.4f}) :: lr={:.5f}, batch={:}".format(
|
||||
loss_meter.avg,
|
||||
loss_meter.val,
|
||||
min(lr_scheduler.get_last_lr()),
|
||||
len(losses),
|
||||
)
|
||||
)
|
||||
|
||||
save_checkpoint(
|
||||
{
|
||||
"hypernet": hypernet.state_dict(),
|
||||
"lr_scheduler": lr_scheduler.state_dict(),
|
||||
"iepoch": iepoch,
|
||||
},
|
||||
logger.path("model"),
|
||||
logger,
|
||||
)
|
||||
loss_meter.reset()
|
||||
per_epoch_time.update(time.time() - start_time)
|
||||
start_time = time.time()
|
||||
|
||||
print(model)
|
||||
print(hypernet)
|
||||
hypernet.load_best()
|
||||
|
||||
w_container_per_epoch = dict()
|
||||
for idx in range(0, total_bar):
|
||||
future_time = env_info["{:}-timestamp".format(idx)]
|
||||
future_x = env_info["{:}-x".format(idx)]
|
||||
future_y = env_info["{:}-y".format(idx)]
|
||||
# future_container = hypernet(task_embeds[idx])
|
||||
future_container = hypernet(idx)
|
||||
w_container_per_epoch[idx] = future_container.no_grad_clone()
|
||||
with torch.no_grad():
|
||||
future_y_hat = model.forward_with_container(
|
||||
future_x, w_container_per_epoch[idx]
|
||||
)
|
||||
future_loss = criterion(future_y_hat, future_y)
|
||||
logger.log("meta-test: [{:03d}] -> loss={:.4f}".format(idx, future_loss.item()))
|
||||
|
||||
save_checkpoint(
|
||||
{"w_container_per_epoch": w_container_per_epoch},
|
||||
logger.path(None) / "final-ckp.pth",
|
||||
logger,
|
||||
)
|
||||
|
||||
logger.log("-" * 200 + "\n")
|
||||
logger.close()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser("Use the data in the past.")
|
||||
parser.add_argument(
|
||||
"--save_dir",
|
||||
type=str,
|
||||
default="./outputs/lfna-synthetic/lfna-test-hpnet",
|
||||
help="The checkpoint directory.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--env_version",
|
||||
type=str,
|
||||
required=True,
|
||||
help="The synthetic enviornment version.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--hidden_dim",
|
||||
type=int,
|
||||
required=True,
|
||||
help="The hidden dimension.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--layer_dim",
|
||||
type=int,
|
||||
required=True,
|
||||
help="The hidden dimension.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--early_stop_thresh",
|
||||
type=int,
|
||||
default=100,
|
||||
help="The maximum epochs for early stop.",
|
||||
)
|
||||
#####
|
||||
parser.add_argument(
|
||||
"--init_lr",
|
||||
type=float,
|
||||
default=0.1,
|
||||
help="The initial learning rate for the optimizer (default is Adam)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--meta_batch",
|
||||
type=int,
|
||||
default=64,
|
||||
help="The batch size for the meta-model",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--epochs",
|
||||
type=int,
|
||||
default=2000,
|
||||
help="The total number of epochs.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--device",
|
||||
type=str,
|
||||
default="cpu",
|
||||
help="",
|
||||
)
|
||||
# Random Seed
|
||||
parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")
|
||||
args = parser.parse_args()
|
||||
if args.rand_seed is None or args.rand_seed < 0:
|
||||
args.rand_seed = random.randint(1, 100000)
|
||||
assert args.save_dir is not None, "The save dir argument can not be None"
|
||||
args.task_dim = args.layer_dim
|
||||
args.save_dir = "{:}-{:}-d{:}".format(
|
||||
args.save_dir, args.env_version, args.hidden_dim
|
||||
)
|
||||
main(args)
|
@ -1,134 +0,0 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
|
||||
#####################################################
|
||||
# python exps/LFNA/lfna-ttss-hpnet.py --env_version v1 --hidden_dim 16
|
||||
#####################################################
|
||||
import sys, time, copy, torch, random, argparse
|
||||
from tqdm import tqdm
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
|
||||
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
|
||||
if str(lib_dir) not in sys.path:
|
||||
sys.path.insert(0, str(lib_dir))
|
||||
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint
|
||||
from log_utils import time_string
|
||||
from log_utils import AverageMeter, convert_secs2time
|
||||
|
||||
from utils import split_str2indexes
|
||||
|
||||
from procedures.advanced_main import basic_train_fn, basic_eval_fn
|
||||
from procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric
|
||||
from datasets.synthetic_core import get_synthetic_env
|
||||
from models.xcore import get_model
|
||||
from xlayers import super_core
|
||||
|
||||
|
||||
from lfna_utils import lfna_setup, train_model, TimeData
|
||||
from lfna_models import HyperNet_VX as HyperNet
|
||||
|
||||
|
||||
def main(args):
|
||||
logger, env_info, model_kwargs = lfna_setup(args)
|
||||
dynamic_env = env_info["dynamic_env"]
|
||||
model = get_model(**model_kwargs)
|
||||
|
||||
total_time = env_info["total"]
|
||||
for i in range(total_time):
|
||||
for xkey in ("timestamp", "x", "y"):
|
||||
nkey = "{:}-{:}".format(i, xkey)
|
||||
assert nkey in env_info, "{:} no in {:}".format(nkey, list(env_info.keys()))
|
||||
train_time_bar = total_time // 2
|
||||
|
||||
criterion = torch.nn.MSELoss()
|
||||
logger.log("There are {:} weights.".format(model.get_w_container().numel()))
|
||||
|
||||
# pre-train the model
|
||||
dataset = init_dataset = TimeData(0, env_info["0-x"], env_info["0-y"])
|
||||
|
||||
shape_container = model.get_w_container().to_shape_container()
|
||||
hypernet = HyperNet(shape_container, 16)
|
||||
print(hypernet)
|
||||
|
||||
optimizer = torch.optim.Adam(hypernet.parameters(), lr=args.init_lr, amsgrad=True)
|
||||
|
||||
best_loss, best_param = None, None
|
||||
for _iepoch in range(args.epochs):
|
||||
container = hypernet(None)
|
||||
|
||||
preds = model.forward_with_container(dataset.x, container)
|
||||
optimizer.zero_grad()
|
||||
loss = criterion(preds, dataset.y)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
# save best
|
||||
if best_loss is None or best_loss > loss.item():
|
||||
best_loss = loss.item()
|
||||
best_param = copy.deepcopy(model.state_dict())
|
||||
print("hyper-net : best={:.4f}".format(best_loss))
|
||||
|
||||
init_loss = train_model(model, init_dataset, args.init_lr, args.epochs)
|
||||
logger.log("The pre-training loss is {:.4f}".format(init_loss))
|
||||
|
||||
print(model)
|
||||
print(hypernet)
|
||||
|
||||
logger.log("-" * 200 + "\n")
|
||||
logger.close()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser("Use the data in the past.")
|
||||
parser.add_argument(
|
||||
"--save_dir",
|
||||
type=str,
|
||||
default="./outputs/lfna-synthetic/lfna-debug",
|
||||
help="The checkpoint directory.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--env_version",
|
||||
type=str,
|
||||
required=True,
|
||||
help="The synthetic enviornment version.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--hidden_dim",
|
||||
type=int,
|
||||
required=True,
|
||||
help="The hidden dimension.",
|
||||
)
|
||||
#####
|
||||
parser.add_argument(
|
||||
"--init_lr",
|
||||
type=float,
|
||||
default=0.1,
|
||||
help="The initial learning rate for the optimizer (default is Adam)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--meta_batch",
|
||||
type=int,
|
||||
default=32,
|
||||
help="The batch size for the meta-model",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--meta_seq",
|
||||
type=int,
|
||||
default=10,
|
||||
help="The length of the sequence for meta-model.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--epochs",
|
||||
type=int,
|
||||
default=2000,
|
||||
help="The total number of epochs.",
|
||||
)
|
||||
# Random Seed
|
||||
parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")
|
||||
args = parser.parse_args()
|
||||
if args.rand_seed is None or args.rand_seed < 0:
|
||||
args.rand_seed = random.randint(1, 100000)
|
||||
assert args.save_dir is not None, "The save dir argument can not be None"
|
||||
args.save_dir = "{:}-{:}-d{:}".format(
|
||||
args.save_dir, args.env_version, args.hidden_dim
|
||||
)
|
||||
main(args)
|
@ -1,272 +0,0 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
|
||||
#####################################################
|
||||
# python exps/LFNA/lfna-v1.py
|
||||
#####################################################
|
||||
import sys, time, copy, torch, random, argparse
|
||||
from tqdm import tqdm
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
|
||||
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
|
||||
if str(lib_dir) not in sys.path:
|
||||
sys.path.insert(0, str(lib_dir))
|
||||
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint
|
||||
from log_utils import time_string
|
||||
from log_utils import AverageMeter, convert_secs2time
|
||||
|
||||
from utils import split_str2indexes
|
||||
|
||||
from procedures.advanced_main import basic_train_fn, basic_eval_fn
|
||||
from procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric
|
||||
from datasets.synthetic_core import get_synthetic_env
|
||||
from models.xcore import get_model
|
||||
from xlayers import super_core
|
||||
|
||||
|
||||
class LFNAmlp:
|
||||
"""A LFNA meta-model that uses the MLP as delta-net."""
|
||||
|
||||
def __init__(self, obs_dim, hidden_sizes, act_name):
|
||||
self.delta_net = super_core.SuperSequential(
|
||||
super_core.SuperLinear(obs_dim, hidden_sizes[0]),
|
||||
super_core.super_name2activation[act_name](),
|
||||
super_core.SuperLinear(hidden_sizes[0], hidden_sizes[1]),
|
||||
super_core.super_name2activation[act_name](),
|
||||
super_core.SuperLinear(hidden_sizes[1], 1),
|
||||
)
|
||||
self.meta_optimizer = torch.optim.Adam(
|
||||
self.delta_net.parameters(), lr=0.01, amsgrad=True
|
||||
)
|
||||
|
||||
def adapt(self, model, criterion, w_container, seq_datasets):
|
||||
w_container.requires_grad_(True)
|
||||
containers = [w_container]
|
||||
for idx, dataset in enumerate(seq_datasets):
|
||||
x, y = dataset.x, dataset.y
|
||||
y_hat = model.forward_with_container(x, containers[-1])
|
||||
loss = criterion(y_hat, y)
|
||||
gradients = torch.autograd.grad(loss, containers[-1].tensors)
|
||||
with torch.no_grad():
|
||||
flatten_w = containers[-1].flatten().view(-1, 1)
|
||||
flatten_g = containers[-1].flatten(gradients).view(-1, 1)
|
||||
input_statistics = torch.tensor([x.mean(), x.std()]).view(1, 2)
|
||||
input_statistics = input_statistics.expand(flatten_w.numel(), -1)
|
||||
delta_inputs = torch.cat((flatten_w, flatten_g, input_statistics), dim=-1)
|
||||
delta = self.delta_net(delta_inputs).view(-1)
|
||||
delta = torch.clamp(delta, -0.5, 0.5)
|
||||
unflatten_delta = containers[-1].unflatten(delta)
|
||||
future_container = containers[-1].no_grad_clone().additive(unflatten_delta)
|
||||
# future_container = containers[-1].additive(unflatten_delta)
|
||||
containers.append(future_container)
|
||||
# containers = containers[1:]
|
||||
meta_loss = []
|
||||
temp_containers = []
|
||||
for idx, dataset in enumerate(seq_datasets):
|
||||
if idx == 0:
|
||||
continue
|
||||
current_container = containers[idx]
|
||||
y_hat = model.forward_with_container(dataset.x, current_container)
|
||||
loss = criterion(y_hat, dataset.y)
|
||||
meta_loss.append(loss)
|
||||
temp_containers.append((dataset.timestamp, current_container, -loss.item()))
|
||||
meta_loss = sum(meta_loss)
|
||||
w_container.requires_grad_(False)
|
||||
# meta_loss.backward()
|
||||
# self.meta_optimizer.step()
|
||||
return meta_loss, temp_containers
|
||||
|
||||
def step(self):
|
||||
torch.nn.utils.clip_grad_norm_(self.delta_net.parameters(), 1.0)
|
||||
self.meta_optimizer.step()
|
||||
|
||||
def zero_grad(self):
|
||||
self.meta_optimizer.zero_grad()
|
||||
self.delta_net.zero_grad()
|
||||
|
||||
|
||||
class TimeData:
|
||||
def __init__(self, timestamp, xs, ys):
|
||||
self._timestamp = timestamp
|
||||
self._xs = xs
|
||||
self._ys = ys
|
||||
|
||||
@property
|
||||
def x(self):
|
||||
return self._xs
|
||||
|
||||
@property
|
||||
def y(self):
|
||||
return self._ys
|
||||
|
||||
@property
|
||||
def timestamp(self):
|
||||
return self._timestamp
|
||||
|
||||
|
||||
class Population:
|
||||
"""A population used to maintain models at different timestamps."""
|
||||
|
||||
def __init__(self):
|
||||
self._time2model = dict()
|
||||
self._time2score = dict() # higher is better
|
||||
|
||||
def append(self, timestamp, model, score):
|
||||
if timestamp in self._time2model:
|
||||
if self._time2score[timestamp] > score:
|
||||
return
|
||||
self._time2model[timestamp] = model.no_grad_clone()
|
||||
self._time2score[timestamp] = score
|
||||
|
||||
def query(self, timestamp):
|
||||
closet_timestamp = None
|
||||
for xtime, model in self._time2model.items():
|
||||
if closet_timestamp is None or (
|
||||
xtime < timestamp and timestamp - closet_timestamp >= timestamp - xtime
|
||||
):
|
||||
closet_timestamp = xtime
|
||||
return self._time2model[closet_timestamp], closet_timestamp
|
||||
|
||||
def debug_info(self, timestamps):
|
||||
xstrs = []
|
||||
for timestamp in timestamps:
|
||||
if timestamp in self._time2score:
|
||||
xstrs.append(
|
||||
"{:04d}: {:.4f}".format(timestamp, self._time2score[timestamp])
|
||||
)
|
||||
return ", ".join(xstrs)
|
||||
|
||||
|
||||
def main(args):
|
||||
prepare_seed(args.rand_seed)
|
||||
logger = prepare_logger(args)
|
||||
|
||||
cache_path = (logger.path(None) / ".." / "env-info.pth").resolve()
|
||||
if cache_path.exists():
|
||||
env_info = torch.load(cache_path)
|
||||
else:
|
||||
env_info = dict()
|
||||
dynamic_env = get_synthetic_env()
|
||||
env_info["total"] = len(dynamic_env)
|
||||
for idx, (timestamp, (_allx, _ally)) in enumerate(tqdm(dynamic_env)):
|
||||
env_info["{:}-timestamp".format(idx)] = timestamp
|
||||
env_info["{:}-x".format(idx)] = _allx
|
||||
env_info["{:}-y".format(idx)] = _ally
|
||||
env_info["dynamic_env"] = dynamic_env
|
||||
torch.save(env_info, cache_path)
|
||||
|
||||
total_time = env_info["total"]
|
||||
for i in range(total_time):
|
||||
for xkey in ("timestamp", "x", "y"):
|
||||
nkey = "{:}-{:}".format(i, xkey)
|
||||
assert nkey in env_info, "{:} no in {:}".format(nkey, list(env_info.keys()))
|
||||
train_time_bar = total_time // 2
|
||||
base_model = get_model(
|
||||
dict(model_type="simple_mlp"),
|
||||
act_cls="leaky_relu",
|
||||
norm_cls="identity",
|
||||
input_dim=1,
|
||||
output_dim=1,
|
||||
)
|
||||
|
||||
w_container = base_model.get_w_container()
|
||||
criterion = torch.nn.MSELoss()
|
||||
print("There are {:} weights.".format(w_container.numel()))
|
||||
|
||||
adaptor = LFNAmlp(4, (50, 20), "leaky_relu")
|
||||
|
||||
pool = Population()
|
||||
pool.append(0, w_container, -100)
|
||||
|
||||
# LFNA meta-training
|
||||
per_epoch_time, start_time = AverageMeter(), time.time()
|
||||
for iepoch in range(args.epochs):
|
||||
|
||||
need_time = "Time Left: {:}".format(
|
||||
convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True)
|
||||
)
|
||||
logger.log(
|
||||
"[{:}] [{:04d}/{:04d}] ".format(time_string(), iepoch, args.epochs)
|
||||
+ need_time
|
||||
)
|
||||
|
||||
adaptor.zero_grad()
|
||||
|
||||
debug_timestamp = set()
|
||||
all_meta_losses = []
|
||||
for ibatch in range(args.meta_batch):
|
||||
sampled_timestamp = random.randint(0, train_time_bar)
|
||||
query_w_container, query_timestamp = pool.query(sampled_timestamp)
|
||||
# def adapt(self, model, w_container, xs, ys):
|
||||
seq_datasets = []
|
||||
# xs, ys = [], []
|
||||
for it in range(sampled_timestamp, sampled_timestamp + args.max_seq):
|
||||
xs = env_info["{:}-x".format(it)]
|
||||
ys = env_info["{:}-y".format(it)]
|
||||
seq_datasets.append(TimeData(it, xs, ys))
|
||||
temp_meta_loss, temp_containers = adaptor.adapt(
|
||||
base_model, criterion, query_w_container, seq_datasets
|
||||
)
|
||||
all_meta_losses.append(temp_meta_loss)
|
||||
for temp_time, temp_container, temp_score in temp_containers:
|
||||
pool.append(temp_time, temp_container, temp_score)
|
||||
debug_timestamp.add(temp_time)
|
||||
meta_loss = torch.stack(all_meta_losses).mean()
|
||||
meta_loss.backward()
|
||||
adaptor.step()
|
||||
|
||||
debug_str = pool.debug_info(debug_timestamp)
|
||||
logger.log("meta-loss: {:.4f}".format(meta_loss.item()))
|
||||
|
||||
per_epoch_time.update(time.time() - start_time)
|
||||
start_time = time.time()
|
||||
|
||||
logger.log("-" * 200 + "\n")
|
||||
logger.close()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser("Use the data in the past.")
|
||||
parser.add_argument(
|
||||
"--save_dir",
|
||||
type=str,
|
||||
default="./outputs/lfna-synthetic/lfna-v1",
|
||||
help="The checkpoint directory.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--init_lr",
|
||||
type=float,
|
||||
default=0.1,
|
||||
help="The initial learning rate for the optimizer (default is Adam)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--meta_batch",
|
||||
type=int,
|
||||
default=5,
|
||||
help="The batch size for the meta-model",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--epochs",
|
||||
type=int,
|
||||
default=1000,
|
||||
help="The total number of epochs.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max_seq",
|
||||
type=int,
|
||||
default=5,
|
||||
help="The maximum length of the sequence.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--workers",
|
||||
type=int,
|
||||
default=4,
|
||||
help="The number of data loading workers (default: 4)",
|
||||
)
|
||||
# Random Seed
|
||||
parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")
|
||||
args = parser.parse_args()
|
||||
if args.rand_seed is None or args.rand_seed < 0:
|
||||
args.rand_seed = random.randint(1, 100000)
|
||||
assert args.save_dir is not None, "The save dir argument can not be None"
|
||||
main(args)
|
@ -1,50 +0,0 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
|
||||
#####################################################
|
||||
import copy
|
||||
import torch
|
||||
|
||||
from xlayers import super_core
|
||||
from xlayers import trunc_normal_
|
||||
from models.xcore import get_model
|
||||
|
||||
|
||||
class HyperNet(super_core.SuperModule):
|
||||
def __init__(self, shape_container, input_embeding, return_container=True):
|
||||
super(HyperNet, self).__init__()
|
||||
self._shape_container = shape_container
|
||||
self._num_layers = len(shape_container)
|
||||
self._numel_per_layer = []
|
||||
for ilayer in range(self._num_layers):
|
||||
self._numel_per_layer.append(shape_container[ilayer].numel())
|
||||
|
||||
self.register_parameter(
|
||||
"_super_layer_embed",
|
||||
torch.nn.Parameter(torch.Tensor(self._num_layers, input_embeding)),
|
||||
)
|
||||
trunc_normal_(self._super_layer_embed, std=0.02)
|
||||
|
||||
model_kwargs = dict(
|
||||
input_dim=input_embeding,
|
||||
output_dim=max(self._numel_per_layer),
|
||||
hidden_dim=input_embeding * 4,
|
||||
act_cls="sigmoid",
|
||||
norm_cls="identity",
|
||||
)
|
||||
self._generator = get_model(dict(model_type="simple_mlp"), **model_kwargs)
|
||||
self._return_container = return_container
|
||||
print("generator: {:}".format(self._generator))
|
||||
|
||||
def forward_raw(self, input):
|
||||
weights = self._generator(self._super_layer_embed)
|
||||
if self._return_container:
|
||||
weights = torch.split(weights, 1)
|
||||
return self._shape_container.translate(weights)
|
||||
else:
|
||||
return weights
|
||||
|
||||
def forward_candidate(self, input):
|
||||
raise NotImplementedError
|
||||
|
||||
def extra_repr(self) -> str:
|
||||
return "(_super_layer_embed): {:}".format(list(self._super_layer_embed.shape))
|
@ -1,7 +1,7 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
|
||||
#####################################################
|
||||
# python exps/LFNA/basic-maml.py --env_version v1 --hidden_dim 16 --inner_step 5
|
||||
# python exps/LFNA/basic-maml.py --env_version v1 --inner_step 5
|
||||
# python exps/LFNA/basic-maml.py --env_version v2
|
||||
#####################################################
|
||||
import sys, time, copy, torch, random, argparse
|
||||
@ -20,7 +20,7 @@ from utils import split_str2indexes
|
||||
|
||||
from procedures.advanced_main import basic_train_fn, basic_eval_fn
|
||||
from procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric
|
||||
from datasets.synthetic_core import get_synthetic_env
|
||||
from datasets.synthetic_core import get_synthetic_env, EnvSampler
|
||||
from models.xcore import get_model
|
||||
from xlayers import super_core
|
||||
|
||||
@ -42,11 +42,10 @@ class MAML:
|
||||
self.meta_lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
|
||||
self.meta_optimizer,
|
||||
milestones=[
|
||||
int(epochs * 0.25),
|
||||
int(epochs * 0.5),
|
||||
int(epochs * 0.75),
|
||||
int(epochs * 0.8),
|
||||
int(epochs * 0.9),
|
||||
],
|
||||
gamma=0.3,
|
||||
gamma=0.1,
|
||||
)
|
||||
self.inner_lr = inner_lr
|
||||
self.inner_step = inner_step
|
||||
@ -85,33 +84,27 @@ class MAML:
|
||||
self.meta_optimizer.load_state_dict(state_dict["meta_optimizer"])
|
||||
self.meta_lr_scheduler.load_state_dict(state_dict["meta_lr_scheduler"])
|
||||
|
||||
def save_best(self, iepoch, score):
|
||||
if self._best_info["score"] is None or self._best_info["score"] < score:
|
||||
state_dict = dict(
|
||||
criterion=self.criterion.state_dict(),
|
||||
network=self.network.state_dict(),
|
||||
meta_optimizer=self.meta_optimizer.state_dict(),
|
||||
meta_lr_scheduler=self.meta_lr_scheduler.state_dict(),
|
||||
)
|
||||
self._best_info["state_dict"] = state_dict
|
||||
self._best_info["score"] = score
|
||||
self._best_info["iepoch"] = iepoch
|
||||
is_best = True
|
||||
else:
|
||||
is_best = False
|
||||
return self._best_info, is_best
|
||||
def state_dict(self):
|
||||
state_dict = dict()
|
||||
state_dict["criterion"] = self.criterion.state_dict()
|
||||
state_dict["network"] = self.network.state_dict()
|
||||
state_dict["meta_optimizer"] = self.meta_optimizer.state_dict()
|
||||
state_dict["meta_lr_scheduler"] = self.meta_lr_scheduler.state_dict()
|
||||
return state_dict
|
||||
|
||||
def save_best(self, score):
|
||||
success, best_score = self.network.save_best(score)
|
||||
return success, best_score
|
||||
|
||||
def load_best(self):
|
||||
self.network.load_best()
|
||||
|
||||
|
||||
def main(args):
|
||||
logger, env_info, model_kwargs = lfna_setup(args)
|
||||
model = get_model(dict(model_type="simple_mlp"), **model_kwargs)
|
||||
model = get_model(**model_kwargs)
|
||||
|
||||
total_time = env_info["total"]
|
||||
for i in range(total_time):
|
||||
for xkey in ("timestamp", "x", "y"):
|
||||
nkey = "{:}-{:}".format(i, xkey)
|
||||
assert nkey in env_info, "{:} no in {:}".format(nkey, list(env_info.keys()))
|
||||
train_time_bar = total_time // 2
|
||||
dynamic_env = get_synthetic_env(mode="train", version=args.env_version)
|
||||
|
||||
criterion = torch.nn.MSELoss()
|
||||
|
||||
@ -120,83 +113,65 @@ def main(args):
|
||||
)
|
||||
|
||||
# meta-training
|
||||
last_success_epoch = 0
|
||||
per_epoch_time, start_time = AverageMeter(), time.time()
|
||||
# for iepoch in range(args.epochs):
|
||||
iepoch = 0
|
||||
while iepoch < args.epochs:
|
||||
for iepoch in range(args.epochs):
|
||||
need_time = "Time Left: {:}".format(
|
||||
convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True)
|
||||
)
|
||||
logger.log(
|
||||
head_str = (
|
||||
"[{:}] [{:04d}/{:04d}] ".format(time_string(), iepoch, args.epochs)
|
||||
+ need_time
|
||||
)
|
||||
|
||||
maml.zero_grad()
|
||||
batch_indexes, meta_losses = [], []
|
||||
meta_losses = []
|
||||
for ibatch in range(args.meta_batch):
|
||||
sampled_timestamp = random.randint(0, train_time_bar)
|
||||
batch_indexes.append("{:5d}".format(sampled_timestamp))
|
||||
past_dataset = TimeData(
|
||||
sampled_timestamp,
|
||||
env_info["{:}-x".format(sampled_timestamp)],
|
||||
env_info["{:}-y".format(sampled_timestamp)],
|
||||
future_timestamp = dynamic_env.random_timestamp()
|
||||
_, (future_x, future_y) = dynamic_env(future_timestamp)
|
||||
past_timestamp = (
|
||||
future_timestamp - args.prev_time * dynamic_env.timestamp_interval
|
||||
)
|
||||
future_dataset = TimeData(
|
||||
sampled_timestamp + 1,
|
||||
env_info["{:}-x".format(sampled_timestamp + 1)],
|
||||
env_info["{:}-y".format(sampled_timestamp + 1)],
|
||||
)
|
||||
future_container = maml.adapt(past_dataset)
|
||||
future_y_hat = maml.predict(future_dataset.x, future_container)
|
||||
future_loss = maml.criterion(future_y_hat, future_dataset.y)
|
||||
_, (past_x, past_y) = dynamic_env(past_timestamp)
|
||||
|
||||
future_container = maml.adapt(TimeData(past_timestamp, past_x, past_y))
|
||||
future_y_hat = maml.predict(future_x, future_container)
|
||||
future_loss = maml.criterion(future_y_hat, future_y)
|
||||
meta_losses.append(future_loss)
|
||||
meta_loss = torch.stack(meta_losses).mean()
|
||||
meta_loss.backward()
|
||||
maml.step()
|
||||
|
||||
logger.log(
|
||||
"meta-loss: {:.4f} batch: {:}".format(
|
||||
meta_loss.item(), ",".join(batch_indexes)
|
||||
)
|
||||
)
|
||||
best_info, is_best = maml.save_best(iepoch, -meta_loss.item())
|
||||
if is_best:
|
||||
save_checkpoint(best_info, logger.path("best"), logger)
|
||||
logger.log("Save the best into {:}".format(logger.path("best")))
|
||||
if iepoch >= 10 and (
|
||||
torch.isnan(meta_loss).item() or meta_loss.item() >= args.fail_thresh
|
||||
):
|
||||
xdata = torch.load(logger.path("best"))
|
||||
maml.load_state_dict(xdata["state_dict"])
|
||||
iepoch = xdata["iepoch"]
|
||||
logger.log(
|
||||
"The training failed, re-use the previous best epoch [{:}]".format(
|
||||
iepoch
|
||||
)
|
||||
)
|
||||
else:
|
||||
iepoch = iepoch + 1
|
||||
logger.log(head_str + " meta-loss: {:.4f}".format(meta_loss.item()))
|
||||
success, best_score = maml.save_best(-meta_loss.item())
|
||||
if success:
|
||||
logger.log("Achieve the best with best_score = {:.3f}".format(best_score))
|
||||
save_checkpoint(maml.state_dict(), logger.path("model"), logger)
|
||||
last_success_epoch = iepoch
|
||||
if iepoch - last_success_epoch >= args.early_stop_thresh:
|
||||
logger.log("Early stop at {:}".format(iepoch))
|
||||
break
|
||||
|
||||
per_epoch_time.update(time.time() - start_time)
|
||||
start_time = time.time()
|
||||
|
||||
# meta-test
|
||||
maml.load_best()
|
||||
eval_env = env_info["dynamic_env"]
|
||||
assert eval_env.timestamp_interval == dynamic_env.timestamp_interval
|
||||
w_container_per_epoch = dict()
|
||||
for idx in range(1, env_info["total"]):
|
||||
past_dataset = TimeData(
|
||||
idx - 1,
|
||||
env_info["{:}-x".format(idx - 1)],
|
||||
env_info["{:}-y".format(idx - 1)],
|
||||
for idx in range(args.prev_time, len(eval_env)):
|
||||
future_timestamp, (future_x, future_y) = eval_env[idx]
|
||||
past_timestamp = (
|
||||
future_timestamp.item() - args.prev_time * eval_env.timestamp_interval
|
||||
)
|
||||
current_container = maml.adapt(past_dataset)
|
||||
w_container_per_epoch[idx] = current_container.no_grad_clone()
|
||||
_, (past_x, past_y) = eval_env(past_timestamp)
|
||||
future_container = maml.adapt(TimeData(past_timestamp, past_x, past_y))
|
||||
w_container_per_epoch[idx] = future_container.no_grad_clone()
|
||||
with torch.no_grad():
|
||||
current_x = env_info["{:}-x".format(idx)]
|
||||
current_y = env_info["{:}-y".format(idx)]
|
||||
current_y_hat = maml.predict(current_x, w_container_per_epoch[idx])
|
||||
current_loss = maml.criterion(current_y_hat, current_y)
|
||||
logger.log(
|
||||
"meta-test: [{:03d}] -> loss={:.4f}".format(idx, current_loss.item())
|
||||
)
|
||||
future_y_hat = maml.predict(future_x, w_container_per_epoch[idx])
|
||||
future_loss = maml.criterion(future_y_hat, future_y)
|
||||
logger.log("meta-test: [{:03d}] -> loss={:.4f}".format(idx, future_loss.item()))
|
||||
save_checkpoint(
|
||||
{"w_container_per_epoch": w_container_per_epoch},
|
||||
logger.path(None) / "final-ckp.pth",
|
||||
@ -224,13 +199,13 @@ if __name__ == "__main__":
|
||||
parser.add_argument(
|
||||
"--hidden_dim",
|
||||
type=int,
|
||||
required=True,
|
||||
default=16,
|
||||
help="The hidden dimension.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--meta_lr",
|
||||
type=float,
|
||||
default=0.05,
|
||||
default=0.01,
|
||||
help="The learning rate for the MAML optimizer (default is Adam)",
|
||||
)
|
||||
parser.add_argument(
|
||||
@ -242,24 +217,36 @@ if __name__ == "__main__":
|
||||
parser.add_argument(
|
||||
"--inner_lr",
|
||||
type=float,
|
||||
default=0.01,
|
||||
default=0.005,
|
||||
help="The learning rate for the inner optimization",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--inner_step", type=int, default=1, help="The inner loop steps for MAML."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--prev_time",
|
||||
type=int,
|
||||
default=5,
|
||||
help="The gap between prev_time and current_timestamp",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--meta_batch",
|
||||
type=int,
|
||||
default=10,
|
||||
default=64,
|
||||
help="The batch size for the meta-model",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--epochs",
|
||||
type=int,
|
||||
default=1000,
|
||||
default=2000,
|
||||
help="The total number of epochs.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--early_stop_thresh",
|
||||
type=int,
|
||||
default=50,
|
||||
help="The maximum epochs for early stop.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--workers",
|
||||
type=int,
|
||||
@ -272,7 +259,13 @@ if __name__ == "__main__":
|
||||
if args.rand_seed is None or args.rand_seed < 0:
|
||||
args.rand_seed = random.randint(1, 100000)
|
||||
assert args.save_dir is not None, "The save dir argument can not be None"
|
||||
args.save_dir = "{:}-s{:}-{:}-d{:}".format(
|
||||
args.save_dir, args.inner_step, args.env_version, args.hidden_dim
|
||||
args.save_dir = "{:}-s{:}-mlr{:}-d{:}-prev{:}-e{:}-env{:}".format(
|
||||
args.save_dir,
|
||||
args.inner_step,
|
||||
args.meta_lr,
|
||||
args.hidden_dim,
|
||||
args.prev_time,
|
||||
args.epochs,
|
||||
args.env_version,
|
||||
)
|
||||
main(args)
|
||||
|
@ -1,7 +1,7 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
|
||||
#####################################################
|
||||
# python exps/LFNA/basic-prev.py --env_version v1 --hidden_dim 16 --epochs 500 --init_lr 0.1
|
||||
# python exps/LFNA/basic-prev.py --env_version v1 --prev_time 5 --hidden_dim 16 --epochs 500 --init_lr 0.1
|
||||
# python exps/LFNA/basic-prev.py --env_version v2 --hidden_dim 16 --epochs 1000 --init_lr 0.05
|
||||
#####################################################
|
||||
import sys, time, copy, torch, random, argparse
|
||||
@ -41,7 +41,7 @@ def main(args):
|
||||
w_container_per_epoch = dict()
|
||||
|
||||
per_timestamp_time, start_time = AverageMeter(), time.time()
|
||||
for idx in range(1, env_info["total"]):
|
||||
for idx in range(args.prev_time, env_info["total"]):
|
||||
|
||||
need_time = "Time Left: {:}".format(
|
||||
convert_secs2time(per_timestamp_time.avg * (env_info["total"] - idx), True)
|
||||
@ -53,8 +53,8 @@ def main(args):
|
||||
+ need_time
|
||||
)
|
||||
# train the same data
|
||||
historical_x = env_info["{:}-x".format(idx - 1)]
|
||||
historical_y = env_info["{:}-y".format(idx - 1)]
|
||||
historical_x = env_info["{:}-x".format(idx - args.prev_time)]
|
||||
historical_y = env_info["{:}-y".format(idx - args.prev_time)]
|
||||
# build model
|
||||
model = get_model(**model_kwargs)
|
||||
print(model)
|
||||
@ -160,6 +160,12 @@ if __name__ == "__main__":
|
||||
default=0.1,
|
||||
help="The initial learning rate for the optimizer (default is Adam)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--prev_time",
|
||||
type=int,
|
||||
default=5,
|
||||
help="The gap between prev_time and current_timestamp",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--batch_size",
|
||||
type=int,
|
||||
@ -184,7 +190,12 @@ if __name__ == "__main__":
|
||||
if args.rand_seed is None or args.rand_seed < 0:
|
||||
args.rand_seed = random.randint(1, 100000)
|
||||
assert args.save_dir is not None, "The save dir argument can not be None"
|
||||
args.save_dir = "{:}-{:}-d{:}".format(
|
||||
args.save_dir, args.env_version, args.hidden_dim
|
||||
args.save_dir = "{:}-d{:}_e{:}_lr{:}-prev{:}-env{:}".format(
|
||||
args.save_dir,
|
||||
args.hidden_dim,
|
||||
args.epochs,
|
||||
args.init_lr,
|
||||
args.prev_time,
|
||||
args.env_version,
|
||||
)
|
||||
main(args)
|
||||
|
@ -41,7 +41,7 @@ def main(args):
|
||||
w_container_per_epoch = dict()
|
||||
|
||||
per_timestamp_time, start_time = AverageMeter(), time.time()
|
||||
for idx in range(env_info["total"]):
|
||||
for idx in range(1, env_info["total"]):
|
||||
|
||||
need_time = "Time Left: {:}".format(
|
||||
convert_secs2time(per_timestamp_time.avg * (env_info["total"] - idx), True)
|
||||
@ -184,7 +184,7 @@ if __name__ == "__main__":
|
||||
if args.rand_seed is None or args.rand_seed < 0:
|
||||
args.rand_seed = random.randint(1, 100000)
|
||||
assert args.save_dir is not None, "The save dir argument can not be None"
|
||||
args.save_dir = "{:}-{:}-d{:}".format(
|
||||
args.save_dir, args.env_version, args.hidden_dim
|
||||
args.save_dir = "{:}-d{:}_e{:}_lr{:}-env{:}".format(
|
||||
args.save_dir, args.hidden_dim, args.epochs, args.init_lr, args.env_version
|
||||
)
|
||||
main(args)
|
||||
|
@ -157,11 +157,11 @@ def main(args):
|
||||
per_epoch_time.update(time.time() - start_time)
|
||||
start_time = time.time()
|
||||
|
||||
# meta-training
|
||||
# meta-test
|
||||
meta_model.load_best()
|
||||
eval_env = env_info["dynamic_env"]
|
||||
w_container_per_epoch = dict()
|
||||
for idx in range(args.seq_length, env_info["total"]):
|
||||
for idx in range(args.seq_length, len(eval_env)):
|
||||
# build-timestamp
|
||||
future_time = env_info["{:}-timestamp".format(idx)]
|
||||
time_seqs = []
|
||||
@ -176,8 +176,8 @@ def main(args):
|
||||
future_container = seq_containers[-1]
|
||||
w_container_per_epoch[idx] = future_container.no_grad_clone()
|
||||
# evaluation
|
||||
future_x = env_info["{:}-x".format(idx)]
|
||||
future_y = env_info["{:}-y".format(idx)]
|
||||
future_x = env_info["{:}-x".format(idx)].to(args.device)
|
||||
future_y = env_info["{:}-y".format(idx)].to(args.device)
|
||||
future_y_hat = base_model.forward_with_container(
|
||||
future_x, w_container_per_epoch[idx]
|
||||
)
|
||||
@ -299,12 +299,12 @@ if __name__ == "__main__":
|
||||
if args.rand_seed is None or args.rand_seed < 0:
|
||||
args.rand_seed = random.randint(1, 100000)
|
||||
assert args.save_dir is not None, "The save dir argument can not be None"
|
||||
args.save_dir = "{:}-{:}-d{:}_{:}_{:}-e{:}".format(
|
||||
args.save_dir = "{:}-d{:}_{:}_{:}-e{:}-env{:}".format(
|
||||
args.save_dir,
|
||||
args.env_version,
|
||||
args.hidden_dim,
|
||||
args.layer_dim,
|
||||
args.time_dim,
|
||||
args.epochs,
|
||||
args.env_version,
|
||||
)
|
||||
main(args)
|
||||
|
@ -237,18 +237,20 @@ def compare_algs(save_dir, version, alg_dir="./outputs/lfna-synthetic"):
|
||||
env_info = torch.load(cache_path)
|
||||
|
||||
alg_name2dir = OrderedDict()
|
||||
alg_name2dir["Optimal"] = "use-same-timestamp"
|
||||
# alg_name2dir["Supervised Learning (History Data)"] = "use-all-past-data"
|
||||
# alg_name2dir["MAML"] = "use-maml-s1"
|
||||
# alg_name2dir["LFNA (fix init)"] = "lfna-fix-init"
|
||||
alg_name2dir["LFNA (debug)"] = "lfna-tall-hpnet"
|
||||
alg_name2all_containers = OrderedDict()
|
||||
if version == "v1":
|
||||
poststr = "v1-d16"
|
||||
# alg_name2dir["Optimal"] = "use-same-timestamp"
|
||||
alg_name2dir["LFNA"] = "lfna-battle-v1-d16_16_16-e200"
|
||||
alg_name2dir[
|
||||
"Previous Timestamp"
|
||||
] = "use-prev-timestamp-d16_e500_lr0.1-prev5-envv1"
|
||||
else:
|
||||
raise ValueError("Invalid version: {:}".format(version))
|
||||
alg_name2all_containers = OrderedDict()
|
||||
for idx_alg, (alg, xdir) in enumerate(alg_name2dir.items()):
|
||||
ckp_path = Path(alg_dir) / "{:}-{:}".format(xdir, poststr) / "final-ckp.pth"
|
||||
ckp_path = Path(alg_dir) / str(xdir) / "final-ckp.pth"
|
||||
xdata = torch.load(ckp_path, map_location="cpu")
|
||||
alg_name2all_containers[alg] = xdata["w_container_per_epoch"]
|
||||
# load the basic model
|
||||
@ -267,11 +269,11 @@ def compare_algs(save_dir, version, alg_dir="./outputs/lfna-synthetic"):
|
||||
dynamic_env = env_info["dynamic_env"]
|
||||
min_t, max_t = dynamic_env.min_timestamp, dynamic_env.max_timestamp
|
||||
|
||||
linewidths = 10
|
||||
linewidths, skip = 10, 5
|
||||
for idx, (timestamp, (ori_allx, ori_ally)) in enumerate(
|
||||
tqdm(dynamic_env, ncols=50)
|
||||
):
|
||||
if idx == 0:
|
||||
if idx <= skip:
|
||||
continue
|
||||
fig = plt.figure(figsize=figsize)
|
||||
cur_ax = fig.add_subplot(2, 1, 1)
|
||||
@ -335,9 +337,9 @@ def compare_algs(save_dir, version, alg_dir="./outputs/lfna-synthetic"):
|
||||
cur_ax.set_ylim(0, 10)
|
||||
cur_ax.legend(loc=1, fontsize=LegendFontsize)
|
||||
|
||||
pdf_save_path = save_dir / "pdf" / "v{:}-{:05d}.pdf".format(version, idx)
|
||||
pdf_save_path = save_dir / "pdf" / "v{:}-{:05d}.pdf".format(version, idx - skip)
|
||||
fig.savefig(str(pdf_save_path), dpi=dpi, bbox_inches="tight", format="pdf")
|
||||
png_save_path = save_dir / "png" / "v{:}-{:05d}.png".format(version, idx)
|
||||
png_save_path = save_dir / "png" / "v{:}-{:05d}.png".format(version, idx - skip)
|
||||
fig.savefig(str(png_save_path), dpi=dpi, bbox_inches="tight", format="png")
|
||||
plt.close("all")
|
||||
save_dir = save_dir.resolve()
|
||||
|
@ -80,6 +80,12 @@ class SyntheticDEnv(data.Dataset):
|
||||
def timestamp_interval(self):
|
||||
return self._timestamp_generator.interval
|
||||
|
||||
def random_timestamp(self):
|
||||
return (
|
||||
random.random() * (self.max_timestamp - self.min_timestamp)
|
||||
+ self.min_timestamp
|
||||
)
|
||||
|
||||
def reset_max_seq_length(self, seq_length):
|
||||
self._seq_length = seq_length
|
||||
|
||||
|
@ -56,11 +56,11 @@ class TimeStamp(UnifiedSplit, data.Dataset):
|
||||
|
||||
@property
|
||||
def min_timestamp(self):
|
||||
return self._min_timestamp
|
||||
return self._min_timestamp + self._interval * min(self._indexes)
|
||||
|
||||
@property
|
||||
def max_timestamp(self):
|
||||
return self._max_timestamp
|
||||
return self._min_timestamp + self._interval * max(self._indexes)
|
||||
|
||||
@property
|
||||
def interval(self):
|
||||
|
Loading…
Reference in New Issue
Block a user