Update LFNA
This commit is contained in:
		| @@ -1,239 +0,0 @@ | |||||||
| ##################################################### |  | ||||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # |  | ||||||
| ##################################################### |  | ||||||
| # python exps/LFNA/lfna-fix-init.py --env_version v1 --hidden_dim 16 |  | ||||||
| ##################################################### |  | ||||||
| import sys, time, copy, torch, random, argparse |  | ||||||
| from tqdm import tqdm |  | ||||||
| from copy import deepcopy |  | ||||||
| from pathlib import Path |  | ||||||
|  |  | ||||||
| lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve() |  | ||||||
| if str(lib_dir) not in sys.path: |  | ||||||
|     sys.path.insert(0, str(lib_dir)) |  | ||||||
| from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint |  | ||||||
| from log_utils import time_string |  | ||||||
| from log_utils import AverageMeter, convert_secs2time |  | ||||||
|  |  | ||||||
| from utils import split_str2indexes |  | ||||||
|  |  | ||||||
| from procedures.advanced_main import basic_train_fn, basic_eval_fn |  | ||||||
| from procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric |  | ||||||
| from datasets.synthetic_core import get_synthetic_env |  | ||||||
| from models.xcore import get_model |  | ||||||
| from xlayers import super_core |  | ||||||
|  |  | ||||||
|  |  | ||||||
| from lfna_utils import lfna_setup, train_model, TimeData |  | ||||||
|  |  | ||||||
|  |  | ||||||
| class LFNAmlp: |  | ||||||
|     """A LFNA meta-model that uses the MLP as delta-net.""" |  | ||||||
|  |  | ||||||
|     def __init__(self, obs_dim, hidden_sizes, act_name, criterion): |  | ||||||
|         self.delta_net = super_core.SuperSequential( |  | ||||||
|             super_core.SuperLinear(obs_dim, hidden_sizes[0]), |  | ||||||
|             super_core.super_name2activation[act_name](), |  | ||||||
|             super_core.SuperLinear(hidden_sizes[0], hidden_sizes[1]), |  | ||||||
|             super_core.super_name2activation[act_name](), |  | ||||||
|             super_core.SuperLinear(hidden_sizes[1], 1), |  | ||||||
|         ) |  | ||||||
|         self.meta_optimizer = torch.optim.Adam( |  | ||||||
|             self.delta_net.parameters(), lr=0.001, amsgrad=True |  | ||||||
|         ) |  | ||||||
|         self.criterion = criterion |  | ||||||
|  |  | ||||||
|     def adapt(self, model, seq_datasets): |  | ||||||
|         delta_inputs = [] |  | ||||||
|         container = model.get_w_container() |  | ||||||
|         for iseq, dataset in enumerate(seq_datasets): |  | ||||||
|             y_hat = model.forward_with_container(dataset.x, container) |  | ||||||
|             loss = self.criterion(y_hat, dataset.y) |  | ||||||
|             gradients = torch.autograd.grad(loss, container.parameters()) |  | ||||||
|             with torch.no_grad(): |  | ||||||
|                 flatten_g = container.flatten(gradients) |  | ||||||
|                 delta_inputs.append(flatten_g) |  | ||||||
|         flatten_w = container.no_grad_clone().flatten() |  | ||||||
|         delta_inputs.append(flatten_w) |  | ||||||
|         delta_inputs = torch.stack(delta_inputs, dim=-1) |  | ||||||
|         delta = self.delta_net(delta_inputs) |  | ||||||
|  |  | ||||||
|         delta = torch.clamp(delta, -0.8, 0.8) |  | ||||||
|         unflatten_delta = container.unflatten(delta) |  | ||||||
|         future_container = container.no_grad_clone().additive(unflatten_delta) |  | ||||||
|         return future_container |  | ||||||
|  |  | ||||||
|     def step(self): |  | ||||||
|         torch.nn.utils.clip_grad_norm_(self.delta_net.parameters(), 1.0) |  | ||||||
|         self.meta_optimizer.step() |  | ||||||
|  |  | ||||||
|     def zero_grad(self): |  | ||||||
|         self.meta_optimizer.zero_grad() |  | ||||||
|         self.delta_net.zero_grad() |  | ||||||
|  |  | ||||||
|     def state_dict(self): |  | ||||||
|         return dict( |  | ||||||
|             delta_net=self.delta_net.state_dict(), |  | ||||||
|             meta_optimizer=self.meta_optimizer.state_dict(), |  | ||||||
|         ) |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def main(args): |  | ||||||
|     logger, env_info, model_kwargs = lfna_setup(args) |  | ||||||
|     dynamic_env = env_info["dynamic_env"] |  | ||||||
|     model = get_model(dict(model_type="simple_mlp"), **model_kwargs) |  | ||||||
|  |  | ||||||
|     total_time = env_info["total"] |  | ||||||
|     for i in range(total_time): |  | ||||||
|         for xkey in ("timestamp", "x", "y"): |  | ||||||
|             nkey = "{:}-{:}".format(i, xkey) |  | ||||||
|             assert nkey in env_info, "{:} no in {:}".format(nkey, list(env_info.keys())) |  | ||||||
|     train_time_bar = total_time // 2 |  | ||||||
|     network = get_model(dict(model_type="simple_mlp"), **model_kwargs) |  | ||||||
|  |  | ||||||
|     criterion = torch.nn.MSELoss() |  | ||||||
|     logger.log("There are {:} weights.".format(network.get_w_container().numel())) |  | ||||||
|  |  | ||||||
|     adaptor = LFNAmlp(1 + args.meta_seq, (20, 20), "leaky_relu", criterion) |  | ||||||
|  |  | ||||||
|     # pre-train the model |  | ||||||
|     init_dataset = TimeData(0, env_info["0-x"], env_info["0-y"]) |  | ||||||
|     init_loss = train_model(network, init_dataset, args.init_lr, args.epochs) |  | ||||||
|     logger.log("The pre-training loss is {:.4f}".format(init_loss)) |  | ||||||
|  |  | ||||||
|     # LFNA meta-training |  | ||||||
|     meta_loss_meter = AverageMeter() |  | ||||||
|     per_epoch_time, start_time = AverageMeter(), time.time() |  | ||||||
|     for iepoch in range(args.epochs): |  | ||||||
|  |  | ||||||
|         need_time = "Time Left: {:}".format( |  | ||||||
|             convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True) |  | ||||||
|         ) |  | ||||||
|         logger.log( |  | ||||||
|             "[{:}] [{:04d}/{:04d}] ".format(time_string(), iepoch, args.epochs) |  | ||||||
|             + need_time |  | ||||||
|         ) |  | ||||||
|  |  | ||||||
|         adaptor.zero_grad() |  | ||||||
|  |  | ||||||
|         batch_indexes, meta_losses = [], [] |  | ||||||
|         for ibatch in range(args.meta_batch): |  | ||||||
|             sampled_timestamp = random.random() * train_time_bar |  | ||||||
|             batch_indexes.append("{:.3f}".format(sampled_timestamp)) |  | ||||||
|             seq_datasets = [] |  | ||||||
|             for iseq in range(args.meta_seq + 1): |  | ||||||
|                 cur_time = sampled_timestamp + iseq * dynamic_env.timestamp_interval |  | ||||||
|                 cur_time, (x, y) = dynamic_env(cur_time) |  | ||||||
|                 seq_datasets.append(TimeData(cur_time, x, y)) |  | ||||||
|             history_datasets, future_dataset = seq_datasets[:-1], seq_datasets[-1] |  | ||||||
|             future_container = adaptor.adapt(network, history_datasets) |  | ||||||
|             future_y_hat = network.forward_with_container( |  | ||||||
|                 future_dataset.x, future_container |  | ||||||
|             ) |  | ||||||
|             future_loss = adaptor.criterion(future_y_hat, future_dataset.y) |  | ||||||
|             meta_losses.append(future_loss) |  | ||||||
|         meta_loss = torch.stack(meta_losses).mean() |  | ||||||
|         meta_loss.backward() |  | ||||||
|         adaptor.step() |  | ||||||
|  |  | ||||||
|         meta_loss_meter.update(meta_loss.item()) |  | ||||||
|  |  | ||||||
|         logger.log( |  | ||||||
|             "meta-loss: {:.4f} ({:.4f}) batch: {:}".format( |  | ||||||
|                 meta_loss_meter.avg, meta_loss_meter.val, ",".join(batch_indexes[:5]) |  | ||||||
|             ) |  | ||||||
|         ) |  | ||||||
|         if iepoch % 200 == 0: |  | ||||||
|             save_checkpoint( |  | ||||||
|                 {"adaptor": adaptor.state_dict(), "iepoch": iepoch}, |  | ||||||
|                 logger.path("model"), |  | ||||||
|                 logger, |  | ||||||
|             ) |  | ||||||
|         per_epoch_time.update(time.time() - start_time) |  | ||||||
|         start_time = time.time() |  | ||||||
|  |  | ||||||
|     w_container_per_epoch = dict() |  | ||||||
|     for idx in range(1, env_info["total"]): |  | ||||||
|         future_time = env_info["{:}-timestamp".format(idx)] |  | ||||||
|         future_x = env_info["{:}-x".format(idx)] |  | ||||||
|         future_y = env_info["{:}-y".format(idx)] |  | ||||||
|         seq_datasets = [] |  | ||||||
|         for iseq in range(1, args.meta_seq + 1): |  | ||||||
|             cur_time = future_time - iseq * dynamic_env.timestamp_interval |  | ||||||
|             cur_time, (x, y) = dynamic_env(cur_time) |  | ||||||
|             seq_datasets.append(TimeData(cur_time, x, y)) |  | ||||||
|         seq_datasets.reverse() |  | ||||||
|         future_container = adaptor.adapt(network, seq_datasets) |  | ||||||
|         w_container_per_epoch[idx] = future_container.no_grad_clone() |  | ||||||
|         with torch.no_grad(): |  | ||||||
|             future_y_hat = network.forward_with_container( |  | ||||||
|                 future_x, w_container_per_epoch[idx] |  | ||||||
|             ) |  | ||||||
|             future_loss = adaptor.criterion(future_y_hat, future_y) |  | ||||||
|         logger.log("meta-test: [{:03d}] -> loss={:.4f}".format(idx, future_loss.item())) |  | ||||||
|  |  | ||||||
|     save_checkpoint( |  | ||||||
|         {"w_container_per_epoch": w_container_per_epoch}, |  | ||||||
|         logger.path(None) / "final-ckp.pth", |  | ||||||
|         logger, |  | ||||||
|     ) |  | ||||||
|  |  | ||||||
|     logger.log("-" * 200 + "\n") |  | ||||||
|     logger.close() |  | ||||||
|  |  | ||||||
|  |  | ||||||
| if __name__ == "__main__": |  | ||||||
|     parser = argparse.ArgumentParser("Use the data in the past.") |  | ||||||
|     parser.add_argument( |  | ||||||
|         "--save_dir", |  | ||||||
|         type=str, |  | ||||||
|         default="./outputs/lfna-synthetic/lfna-fix-init", |  | ||||||
|         help="The checkpoint directory.", |  | ||||||
|     ) |  | ||||||
|     parser.add_argument( |  | ||||||
|         "--env_version", |  | ||||||
|         type=str, |  | ||||||
|         required=True, |  | ||||||
|         help="The synthetic enviornment version.", |  | ||||||
|     ) |  | ||||||
|     parser.add_argument( |  | ||||||
|         "--hidden_dim", |  | ||||||
|         type=int, |  | ||||||
|         required=True, |  | ||||||
|         help="The hidden dimension.", |  | ||||||
|     ) |  | ||||||
|     ##### |  | ||||||
|     parser.add_argument( |  | ||||||
|         "--init_lr", |  | ||||||
|         type=float, |  | ||||||
|         default=0.1, |  | ||||||
|         help="The initial learning rate for the optimizer (default is Adam)", |  | ||||||
|     ) |  | ||||||
|     parser.add_argument( |  | ||||||
|         "--meta_batch", |  | ||||||
|         type=int, |  | ||||||
|         default=32, |  | ||||||
|         help="The batch size for the meta-model", |  | ||||||
|     ) |  | ||||||
|     parser.add_argument( |  | ||||||
|         "--meta_seq", |  | ||||||
|         type=int, |  | ||||||
|         default=10, |  | ||||||
|         help="The length of the sequence for meta-model.", |  | ||||||
|     ) |  | ||||||
|     parser.add_argument( |  | ||||||
|         "--epochs", |  | ||||||
|         type=int, |  | ||||||
|         default=1000, |  | ||||||
|         help="The total number of epochs.", |  | ||||||
|     ) |  | ||||||
|     # Random Seed |  | ||||||
|     parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed") |  | ||||||
|     args = parser.parse_args() |  | ||||||
|     if args.rand_seed is None or args.rand_seed < 0: |  | ||||||
|         args.rand_seed = random.randint(1, 100000) |  | ||||||
|     assert args.save_dir is not None, "The save dir argument can not be None" |  | ||||||
|     args.save_dir = "{:}-{:}-d{:}".format( |  | ||||||
|         args.save_dir, args.env_version, args.hidden_dim |  | ||||||
|     ) |  | ||||||
|     main(args) |  | ||||||
| @@ -1,239 +0,0 @@ | |||||||
| ##################################################### |  | ||||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # |  | ||||||
| ##################################################### |  | ||||||
| # python exps/LFNA/lfna-test-hpnet.py --env_version v1 --hidden_dim 16 --layer_dim 16 --epochs 10000 --init_lr 0.01 |  | ||||||
| # python exps/LFNA/lfna-test-hpnet.py --env_version v1 --hidden_dim 16 --layer_dim 16 --epochs 10000 --init_lr 0.01 --device cuda |  | ||||||
| ##################################################### |  | ||||||
| import sys, time, copy, torch, random, argparse |  | ||||||
| from tqdm import tqdm |  | ||||||
| from copy import deepcopy |  | ||||||
| from pathlib import Path |  | ||||||
|  |  | ||||||
| lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve() |  | ||||||
| if str(lib_dir) not in sys.path: |  | ||||||
|     sys.path.insert(0, str(lib_dir)) |  | ||||||
| from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint |  | ||||||
| from log_utils import time_string |  | ||||||
| from log_utils import AverageMeter, convert_secs2time |  | ||||||
|  |  | ||||||
| from utils import split_str2indexes |  | ||||||
|  |  | ||||||
| from procedures.advanced_main import basic_train_fn, basic_eval_fn |  | ||||||
| from procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric |  | ||||||
| from datasets.synthetic_core import get_synthetic_env |  | ||||||
| from models.xcore import get_model |  | ||||||
| from xlayers import super_core, trunc_normal_ |  | ||||||
|  |  | ||||||
|  |  | ||||||
| from lfna_utils import lfna_setup, train_model, TimeData |  | ||||||
|  |  | ||||||
| # from lfna_models import HyperNet_VX as HyperNet |  | ||||||
| from lfna_models import HyperNet |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def main(args): |  | ||||||
|     logger, env_info, model_kwargs = lfna_setup(args) |  | ||||||
|     dynamic_env = env_info["dynamic_env"] |  | ||||||
|     model = get_model(**model_kwargs) |  | ||||||
|     model = model.to(args.device) |  | ||||||
|     criterion = torch.nn.MSELoss() |  | ||||||
|  |  | ||||||
|     shape_container = model.get_w_container().to_shape_container() |  | ||||||
|     total_bar = 100 |  | ||||||
|     hypernet = HyperNet(shape_container, args.layer_dim, args.task_dim, total_bar) |  | ||||||
|     hypernet = hypernet.to(args.device) |  | ||||||
|  |  | ||||||
|     logger.log( |  | ||||||
|         "{:} There are {:} weights in the base-model.".format( |  | ||||||
|             time_string(), model.numel() |  | ||||||
|         ) |  | ||||||
|     ) |  | ||||||
|     logger.log( |  | ||||||
|         "{:} There are {:} weights in the meta-model.".format( |  | ||||||
|             time_string(), hypernet.numel() |  | ||||||
|         ) |  | ||||||
|     ) |  | ||||||
|     for i in range(total_bar): |  | ||||||
|         env_info["{:}-x".format(i)] = env_info["{:}-x".format(i)].to(args.device) |  | ||||||
|         env_info["{:}-y".format(i)] = env_info["{:}-y".format(i)].to(args.device) |  | ||||||
|  |  | ||||||
|     model.train() |  | ||||||
|     hypernet.train() |  | ||||||
|  |  | ||||||
|     optimizer = torch.optim.Adam( |  | ||||||
|         hypernet.parameters(), lr=args.init_lr, weight_decay=1e-5, amsgrad=True |  | ||||||
|     ) |  | ||||||
|     lr_scheduler = torch.optim.lr_scheduler.MultiStepLR( |  | ||||||
|         optimizer, |  | ||||||
|         milestones=[ |  | ||||||
|             int(args.epochs * 0.8), |  | ||||||
|             int(args.epochs * 0.9), |  | ||||||
|         ], |  | ||||||
|         gamma=0.1, |  | ||||||
|     ) |  | ||||||
|  |  | ||||||
|     # total_bar = env_info["total"] - 1 |  | ||||||
|     # LFNA meta-training |  | ||||||
|     loss_meter = AverageMeter() |  | ||||||
|     per_epoch_time, start_time = AverageMeter(), time.time() |  | ||||||
|     last_success = 0 |  | ||||||
|     for iepoch in range(args.epochs): |  | ||||||
|  |  | ||||||
|         need_time = "Time Left: {:}".format( |  | ||||||
|             convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True) |  | ||||||
|         ) |  | ||||||
|         head_str = ( |  | ||||||
|             "[{:}] [{:04d}/{:04d}] ".format(time_string(), iepoch, args.epochs) |  | ||||||
|             + need_time |  | ||||||
|         ) |  | ||||||
|  |  | ||||||
|         losses = [] |  | ||||||
|         # for ibatch in range(args.meta_batch): |  | ||||||
|         for cur_time in range(total_bar): |  | ||||||
|             # cur_time = random.randint(0, total_bar) |  | ||||||
|             # cur_task_embed = task_embeds[cur_time] |  | ||||||
|             cur_container = hypernet(cur_time) |  | ||||||
|             cur_x = env_info["{:}-x".format(cur_time)] |  | ||||||
|             cur_y = env_info["{:}-y".format(cur_time)] |  | ||||||
|             cur_dataset = TimeData(cur_time, cur_x, cur_y) |  | ||||||
|  |  | ||||||
|             preds = model.forward_with_container(cur_dataset.x, cur_container) |  | ||||||
|             optimizer.zero_grad() |  | ||||||
|             loss = criterion(preds, cur_dataset.y) |  | ||||||
|  |  | ||||||
|             losses.append(loss) |  | ||||||
|  |  | ||||||
|         final_loss = torch.stack(losses).mean() |  | ||||||
|         final_loss.backward() |  | ||||||
|         optimizer.step() |  | ||||||
|         lr_scheduler.step() |  | ||||||
|  |  | ||||||
|         loss_meter.update(final_loss.item()) |  | ||||||
|         success, best_score = hypernet.save_best(-loss_meter.val) |  | ||||||
|         if success: |  | ||||||
|             logger.log("Achieve the best with best_score = {:.3f}".format(best_score)) |  | ||||||
|             last_success = iepoch |  | ||||||
|         if iepoch - last_success >= args.early_stop_thresh: |  | ||||||
|             logger.log("Early stop at {:}".format(iepoch)) |  | ||||||
|             break |  | ||||||
|         if iepoch % 20 == 0: |  | ||||||
|             logger.log( |  | ||||||
|                 head_str |  | ||||||
|                 + " meta-loss: {:.4f} ({:.4f}) :: lr={:.5f}, batch={:}".format( |  | ||||||
|                     loss_meter.avg, |  | ||||||
|                     loss_meter.val, |  | ||||||
|                     min(lr_scheduler.get_last_lr()), |  | ||||||
|                     len(losses), |  | ||||||
|                 ) |  | ||||||
|             ) |  | ||||||
|  |  | ||||||
|             save_checkpoint( |  | ||||||
|                 { |  | ||||||
|                     "hypernet": hypernet.state_dict(), |  | ||||||
|                     "lr_scheduler": lr_scheduler.state_dict(), |  | ||||||
|                     "iepoch": iepoch, |  | ||||||
|                 }, |  | ||||||
|                 logger.path("model"), |  | ||||||
|                 logger, |  | ||||||
|             ) |  | ||||||
|             loss_meter.reset() |  | ||||||
|         per_epoch_time.update(time.time() - start_time) |  | ||||||
|         start_time = time.time() |  | ||||||
|  |  | ||||||
|     print(model) |  | ||||||
|     print(hypernet) |  | ||||||
|     hypernet.load_best() |  | ||||||
|  |  | ||||||
|     w_container_per_epoch = dict() |  | ||||||
|     for idx in range(0, total_bar): |  | ||||||
|         future_time = env_info["{:}-timestamp".format(idx)] |  | ||||||
|         future_x = env_info["{:}-x".format(idx)] |  | ||||||
|         future_y = env_info["{:}-y".format(idx)] |  | ||||||
|         # future_container = hypernet(task_embeds[idx]) |  | ||||||
|         future_container = hypernet(idx) |  | ||||||
|         w_container_per_epoch[idx] = future_container.no_grad_clone() |  | ||||||
|         with torch.no_grad(): |  | ||||||
|             future_y_hat = model.forward_with_container( |  | ||||||
|                 future_x, w_container_per_epoch[idx] |  | ||||||
|             ) |  | ||||||
|             future_loss = criterion(future_y_hat, future_y) |  | ||||||
|         logger.log("meta-test: [{:03d}] -> loss={:.4f}".format(idx, future_loss.item())) |  | ||||||
|  |  | ||||||
|     save_checkpoint( |  | ||||||
|         {"w_container_per_epoch": w_container_per_epoch}, |  | ||||||
|         logger.path(None) / "final-ckp.pth", |  | ||||||
|         logger, |  | ||||||
|     ) |  | ||||||
|  |  | ||||||
|     logger.log("-" * 200 + "\n") |  | ||||||
|     logger.close() |  | ||||||
|  |  | ||||||
|  |  | ||||||
| if __name__ == "__main__": |  | ||||||
|     parser = argparse.ArgumentParser("Use the data in the past.") |  | ||||||
|     parser.add_argument( |  | ||||||
|         "--save_dir", |  | ||||||
|         type=str, |  | ||||||
|         default="./outputs/lfna-synthetic/lfna-test-hpnet", |  | ||||||
|         help="The checkpoint directory.", |  | ||||||
|     ) |  | ||||||
|     parser.add_argument( |  | ||||||
|         "--env_version", |  | ||||||
|         type=str, |  | ||||||
|         required=True, |  | ||||||
|         help="The synthetic enviornment version.", |  | ||||||
|     ) |  | ||||||
|     parser.add_argument( |  | ||||||
|         "--hidden_dim", |  | ||||||
|         type=int, |  | ||||||
|         required=True, |  | ||||||
|         help="The hidden dimension.", |  | ||||||
|     ) |  | ||||||
|     parser.add_argument( |  | ||||||
|         "--layer_dim", |  | ||||||
|         type=int, |  | ||||||
|         required=True, |  | ||||||
|         help="The hidden dimension.", |  | ||||||
|     ) |  | ||||||
|     parser.add_argument( |  | ||||||
|         "--early_stop_thresh", |  | ||||||
|         type=int, |  | ||||||
|         default=100, |  | ||||||
|         help="The maximum epochs for early stop.", |  | ||||||
|     ) |  | ||||||
|     ##### |  | ||||||
|     parser.add_argument( |  | ||||||
|         "--init_lr", |  | ||||||
|         type=float, |  | ||||||
|         default=0.1, |  | ||||||
|         help="The initial learning rate for the optimizer (default is Adam)", |  | ||||||
|     ) |  | ||||||
|     parser.add_argument( |  | ||||||
|         "--meta_batch", |  | ||||||
|         type=int, |  | ||||||
|         default=64, |  | ||||||
|         help="The batch size for the meta-model", |  | ||||||
|     ) |  | ||||||
|     parser.add_argument( |  | ||||||
|         "--epochs", |  | ||||||
|         type=int, |  | ||||||
|         default=2000, |  | ||||||
|         help="The total number of epochs.", |  | ||||||
|     ) |  | ||||||
|     parser.add_argument( |  | ||||||
|         "--device", |  | ||||||
|         type=str, |  | ||||||
|         default="cpu", |  | ||||||
|         help="", |  | ||||||
|     ) |  | ||||||
|     # Random Seed |  | ||||||
|     parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed") |  | ||||||
|     args = parser.parse_args() |  | ||||||
|     if args.rand_seed is None or args.rand_seed < 0: |  | ||||||
|         args.rand_seed = random.randint(1, 100000) |  | ||||||
|     assert args.save_dir is not None, "The save dir argument can not be None" |  | ||||||
|     args.task_dim = args.layer_dim |  | ||||||
|     args.save_dir = "{:}-{:}-d{:}".format( |  | ||||||
|         args.save_dir, args.env_version, args.hidden_dim |  | ||||||
|     ) |  | ||||||
|     main(args) |  | ||||||
| @@ -1,134 +0,0 @@ | |||||||
| ##################################################### |  | ||||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # |  | ||||||
| ##################################################### |  | ||||||
| # python exps/LFNA/lfna-ttss-hpnet.py --env_version v1 --hidden_dim 16 |  | ||||||
| ##################################################### |  | ||||||
| import sys, time, copy, torch, random, argparse |  | ||||||
| from tqdm import tqdm |  | ||||||
| from copy import deepcopy |  | ||||||
| from pathlib import Path |  | ||||||
|  |  | ||||||
| lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve() |  | ||||||
| if str(lib_dir) not in sys.path: |  | ||||||
|     sys.path.insert(0, str(lib_dir)) |  | ||||||
| from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint |  | ||||||
| from log_utils import time_string |  | ||||||
| from log_utils import AverageMeter, convert_secs2time |  | ||||||
|  |  | ||||||
| from utils import split_str2indexes |  | ||||||
|  |  | ||||||
| from procedures.advanced_main import basic_train_fn, basic_eval_fn |  | ||||||
| from procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric |  | ||||||
| from datasets.synthetic_core import get_synthetic_env |  | ||||||
| from models.xcore import get_model |  | ||||||
| from xlayers import super_core |  | ||||||
|  |  | ||||||
|  |  | ||||||
| from lfna_utils import lfna_setup, train_model, TimeData |  | ||||||
| from lfna_models import HyperNet_VX as HyperNet |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def main(args): |  | ||||||
|     logger, env_info, model_kwargs = lfna_setup(args) |  | ||||||
|     dynamic_env = env_info["dynamic_env"] |  | ||||||
|     model = get_model(**model_kwargs) |  | ||||||
|  |  | ||||||
|     total_time = env_info["total"] |  | ||||||
|     for i in range(total_time): |  | ||||||
|         for xkey in ("timestamp", "x", "y"): |  | ||||||
|             nkey = "{:}-{:}".format(i, xkey) |  | ||||||
|             assert nkey in env_info, "{:} no in {:}".format(nkey, list(env_info.keys())) |  | ||||||
|     train_time_bar = total_time // 2 |  | ||||||
|  |  | ||||||
|     criterion = torch.nn.MSELoss() |  | ||||||
|     logger.log("There are {:} weights.".format(model.get_w_container().numel())) |  | ||||||
|  |  | ||||||
|     # pre-train the model |  | ||||||
|     dataset = init_dataset = TimeData(0, env_info["0-x"], env_info["0-y"]) |  | ||||||
|  |  | ||||||
|     shape_container = model.get_w_container().to_shape_container() |  | ||||||
|     hypernet = HyperNet(shape_container, 16) |  | ||||||
|     print(hypernet) |  | ||||||
|  |  | ||||||
|     optimizer = torch.optim.Adam(hypernet.parameters(), lr=args.init_lr, amsgrad=True) |  | ||||||
|  |  | ||||||
|     best_loss, best_param = None, None |  | ||||||
|     for _iepoch in range(args.epochs): |  | ||||||
|         container = hypernet(None) |  | ||||||
|  |  | ||||||
|         preds = model.forward_with_container(dataset.x, container) |  | ||||||
|         optimizer.zero_grad() |  | ||||||
|         loss = criterion(preds, dataset.y) |  | ||||||
|         loss.backward() |  | ||||||
|         optimizer.step() |  | ||||||
|         # save best |  | ||||||
|         if best_loss is None or best_loss > loss.item(): |  | ||||||
|             best_loss = loss.item() |  | ||||||
|             best_param = copy.deepcopy(model.state_dict()) |  | ||||||
|     print("hyper-net : best={:.4f}".format(best_loss)) |  | ||||||
|  |  | ||||||
|     init_loss = train_model(model, init_dataset, args.init_lr, args.epochs) |  | ||||||
|     logger.log("The pre-training loss is {:.4f}".format(init_loss)) |  | ||||||
|  |  | ||||||
|     print(model) |  | ||||||
|     print(hypernet) |  | ||||||
|  |  | ||||||
|     logger.log("-" * 200 + "\n") |  | ||||||
|     logger.close() |  | ||||||
|  |  | ||||||
|  |  | ||||||
| if __name__ == "__main__": |  | ||||||
|     parser = argparse.ArgumentParser("Use the data in the past.") |  | ||||||
|     parser.add_argument( |  | ||||||
|         "--save_dir", |  | ||||||
|         type=str, |  | ||||||
|         default="./outputs/lfna-synthetic/lfna-debug", |  | ||||||
|         help="The checkpoint directory.", |  | ||||||
|     ) |  | ||||||
|     parser.add_argument( |  | ||||||
|         "--env_version", |  | ||||||
|         type=str, |  | ||||||
|         required=True, |  | ||||||
|         help="The synthetic enviornment version.", |  | ||||||
|     ) |  | ||||||
|     parser.add_argument( |  | ||||||
|         "--hidden_dim", |  | ||||||
|         type=int, |  | ||||||
|         required=True, |  | ||||||
|         help="The hidden dimension.", |  | ||||||
|     ) |  | ||||||
|     ##### |  | ||||||
|     parser.add_argument( |  | ||||||
|         "--init_lr", |  | ||||||
|         type=float, |  | ||||||
|         default=0.1, |  | ||||||
|         help="The initial learning rate for the optimizer (default is Adam)", |  | ||||||
|     ) |  | ||||||
|     parser.add_argument( |  | ||||||
|         "--meta_batch", |  | ||||||
|         type=int, |  | ||||||
|         default=32, |  | ||||||
|         help="The batch size for the meta-model", |  | ||||||
|     ) |  | ||||||
|     parser.add_argument( |  | ||||||
|         "--meta_seq", |  | ||||||
|         type=int, |  | ||||||
|         default=10, |  | ||||||
|         help="The length of the sequence for meta-model.", |  | ||||||
|     ) |  | ||||||
|     parser.add_argument( |  | ||||||
|         "--epochs", |  | ||||||
|         type=int, |  | ||||||
|         default=2000, |  | ||||||
|         help="The total number of epochs.", |  | ||||||
|     ) |  | ||||||
|     # Random Seed |  | ||||||
|     parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed") |  | ||||||
|     args = parser.parse_args() |  | ||||||
|     if args.rand_seed is None or args.rand_seed < 0: |  | ||||||
|         args.rand_seed = random.randint(1, 100000) |  | ||||||
|     assert args.save_dir is not None, "The save dir argument can not be None" |  | ||||||
|     args.save_dir = "{:}-{:}-d{:}".format( |  | ||||||
|         args.save_dir, args.env_version, args.hidden_dim |  | ||||||
|     ) |  | ||||||
|     main(args) |  | ||||||
| @@ -1,272 +0,0 @@ | |||||||
| ##################################################### |  | ||||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # |  | ||||||
| ##################################################### |  | ||||||
| # python exps/LFNA/lfna-v1.py |  | ||||||
| ##################################################### |  | ||||||
| import sys, time, copy, torch, random, argparse |  | ||||||
| from tqdm import tqdm |  | ||||||
| from copy import deepcopy |  | ||||||
| from pathlib import Path |  | ||||||
|  |  | ||||||
| lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve() |  | ||||||
| if str(lib_dir) not in sys.path: |  | ||||||
|     sys.path.insert(0, str(lib_dir)) |  | ||||||
| from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint |  | ||||||
| from log_utils import time_string |  | ||||||
| from log_utils import AverageMeter, convert_secs2time |  | ||||||
|  |  | ||||||
| from utils import split_str2indexes |  | ||||||
|  |  | ||||||
| from procedures.advanced_main import basic_train_fn, basic_eval_fn |  | ||||||
| from procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric |  | ||||||
| from datasets.synthetic_core import get_synthetic_env |  | ||||||
| from models.xcore import get_model |  | ||||||
| from xlayers import super_core |  | ||||||
|  |  | ||||||
|  |  | ||||||
| class LFNAmlp: |  | ||||||
|     """A LFNA meta-model that uses the MLP as delta-net.""" |  | ||||||
|  |  | ||||||
|     def __init__(self, obs_dim, hidden_sizes, act_name): |  | ||||||
|         self.delta_net = super_core.SuperSequential( |  | ||||||
|             super_core.SuperLinear(obs_dim, hidden_sizes[0]), |  | ||||||
|             super_core.super_name2activation[act_name](), |  | ||||||
|             super_core.SuperLinear(hidden_sizes[0], hidden_sizes[1]), |  | ||||||
|             super_core.super_name2activation[act_name](), |  | ||||||
|             super_core.SuperLinear(hidden_sizes[1], 1), |  | ||||||
|         ) |  | ||||||
|         self.meta_optimizer = torch.optim.Adam( |  | ||||||
|             self.delta_net.parameters(), lr=0.01, amsgrad=True |  | ||||||
|         ) |  | ||||||
|  |  | ||||||
|     def adapt(self, model, criterion, w_container, seq_datasets): |  | ||||||
|         w_container.requires_grad_(True) |  | ||||||
|         containers = [w_container] |  | ||||||
|         for idx, dataset in enumerate(seq_datasets): |  | ||||||
|             x, y = dataset.x, dataset.y |  | ||||||
|             y_hat = model.forward_with_container(x, containers[-1]) |  | ||||||
|             loss = criterion(y_hat, y) |  | ||||||
|             gradients = torch.autograd.grad(loss, containers[-1].tensors) |  | ||||||
|             with torch.no_grad(): |  | ||||||
|                 flatten_w = containers[-1].flatten().view(-1, 1) |  | ||||||
|                 flatten_g = containers[-1].flatten(gradients).view(-1, 1) |  | ||||||
|                 input_statistics = torch.tensor([x.mean(), x.std()]).view(1, 2) |  | ||||||
|                 input_statistics = input_statistics.expand(flatten_w.numel(), -1) |  | ||||||
|             delta_inputs = torch.cat((flatten_w, flatten_g, input_statistics), dim=-1) |  | ||||||
|             delta = self.delta_net(delta_inputs).view(-1) |  | ||||||
|             delta = torch.clamp(delta, -0.5, 0.5) |  | ||||||
|             unflatten_delta = containers[-1].unflatten(delta) |  | ||||||
|             future_container = containers[-1].no_grad_clone().additive(unflatten_delta) |  | ||||||
|             # future_container = containers[-1].additive(unflatten_delta) |  | ||||||
|             containers.append(future_container) |  | ||||||
|         # containers = containers[1:] |  | ||||||
|         meta_loss = [] |  | ||||||
|         temp_containers = [] |  | ||||||
|         for idx, dataset in enumerate(seq_datasets): |  | ||||||
|             if idx == 0: |  | ||||||
|                 continue |  | ||||||
|             current_container = containers[idx] |  | ||||||
|             y_hat = model.forward_with_container(dataset.x, current_container) |  | ||||||
|             loss = criterion(y_hat, dataset.y) |  | ||||||
|             meta_loss.append(loss) |  | ||||||
|             temp_containers.append((dataset.timestamp, current_container, -loss.item())) |  | ||||||
|         meta_loss = sum(meta_loss) |  | ||||||
|         w_container.requires_grad_(False) |  | ||||||
|         # meta_loss.backward() |  | ||||||
|         # self.meta_optimizer.step() |  | ||||||
|         return meta_loss, temp_containers |  | ||||||
|  |  | ||||||
|     def step(self): |  | ||||||
|         torch.nn.utils.clip_grad_norm_(self.delta_net.parameters(), 1.0) |  | ||||||
|         self.meta_optimizer.step() |  | ||||||
|  |  | ||||||
|     def zero_grad(self): |  | ||||||
|         self.meta_optimizer.zero_grad() |  | ||||||
|         self.delta_net.zero_grad() |  | ||||||
|  |  | ||||||
|  |  | ||||||
| class TimeData: |  | ||||||
|     def __init__(self, timestamp, xs, ys): |  | ||||||
|         self._timestamp = timestamp |  | ||||||
|         self._xs = xs |  | ||||||
|         self._ys = ys |  | ||||||
|  |  | ||||||
|     @property |  | ||||||
|     def x(self): |  | ||||||
|         return self._xs |  | ||||||
|  |  | ||||||
|     @property |  | ||||||
|     def y(self): |  | ||||||
|         return self._ys |  | ||||||
|  |  | ||||||
|     @property |  | ||||||
|     def timestamp(self): |  | ||||||
|         return self._timestamp |  | ||||||
|  |  | ||||||
|  |  | ||||||
| class Population: |  | ||||||
|     """A population used to maintain models at different timestamps.""" |  | ||||||
|  |  | ||||||
|     def __init__(self): |  | ||||||
|         self._time2model = dict() |  | ||||||
|         self._time2score = dict()  # higher is better |  | ||||||
|  |  | ||||||
|     def append(self, timestamp, model, score): |  | ||||||
|         if timestamp in self._time2model: |  | ||||||
|             if self._time2score[timestamp] > score: |  | ||||||
|                 return |  | ||||||
|         self._time2model[timestamp] = model.no_grad_clone() |  | ||||||
|         self._time2score[timestamp] = score |  | ||||||
|  |  | ||||||
|     def query(self, timestamp): |  | ||||||
|         closet_timestamp = None |  | ||||||
|         for xtime, model in self._time2model.items(): |  | ||||||
|             if closet_timestamp is None or ( |  | ||||||
|                 xtime < timestamp and timestamp - closet_timestamp >= timestamp - xtime |  | ||||||
|             ): |  | ||||||
|                 closet_timestamp = xtime |  | ||||||
|         return self._time2model[closet_timestamp], closet_timestamp |  | ||||||
|  |  | ||||||
|     def debug_info(self, timestamps): |  | ||||||
|         xstrs = [] |  | ||||||
|         for timestamp in timestamps: |  | ||||||
|             if timestamp in self._time2score: |  | ||||||
|                 xstrs.append( |  | ||||||
|                     "{:04d}: {:.4f}".format(timestamp, self._time2score[timestamp]) |  | ||||||
|                 ) |  | ||||||
|         return ", ".join(xstrs) |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def main(args): |  | ||||||
|     prepare_seed(args.rand_seed) |  | ||||||
|     logger = prepare_logger(args) |  | ||||||
|  |  | ||||||
|     cache_path = (logger.path(None) / ".." / "env-info.pth").resolve() |  | ||||||
|     if cache_path.exists(): |  | ||||||
|         env_info = torch.load(cache_path) |  | ||||||
|     else: |  | ||||||
|         env_info = dict() |  | ||||||
|         dynamic_env = get_synthetic_env() |  | ||||||
|         env_info["total"] = len(dynamic_env) |  | ||||||
|         for idx, (timestamp, (_allx, _ally)) in enumerate(tqdm(dynamic_env)): |  | ||||||
|             env_info["{:}-timestamp".format(idx)] = timestamp |  | ||||||
|             env_info["{:}-x".format(idx)] = _allx |  | ||||||
|             env_info["{:}-y".format(idx)] = _ally |  | ||||||
|         env_info["dynamic_env"] = dynamic_env |  | ||||||
|         torch.save(env_info, cache_path) |  | ||||||
|  |  | ||||||
|     total_time = env_info["total"] |  | ||||||
|     for i in range(total_time): |  | ||||||
|         for xkey in ("timestamp", "x", "y"): |  | ||||||
|             nkey = "{:}-{:}".format(i, xkey) |  | ||||||
|             assert nkey in env_info, "{:} no in {:}".format(nkey, list(env_info.keys())) |  | ||||||
|     train_time_bar = total_time // 2 |  | ||||||
|     base_model = get_model( |  | ||||||
|         dict(model_type="simple_mlp"), |  | ||||||
|         act_cls="leaky_relu", |  | ||||||
|         norm_cls="identity", |  | ||||||
|         input_dim=1, |  | ||||||
|         output_dim=1, |  | ||||||
|     ) |  | ||||||
|  |  | ||||||
|     w_container = base_model.get_w_container() |  | ||||||
|     criterion = torch.nn.MSELoss() |  | ||||||
|     print("There are {:} weights.".format(w_container.numel())) |  | ||||||
|  |  | ||||||
|     adaptor = LFNAmlp(4, (50, 20), "leaky_relu") |  | ||||||
|  |  | ||||||
|     pool = Population() |  | ||||||
|     pool.append(0, w_container, -100) |  | ||||||
|  |  | ||||||
|     # LFNA meta-training |  | ||||||
|     per_epoch_time, start_time = AverageMeter(), time.time() |  | ||||||
|     for iepoch in range(args.epochs): |  | ||||||
|  |  | ||||||
|         need_time = "Time Left: {:}".format( |  | ||||||
|             convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True) |  | ||||||
|         ) |  | ||||||
|         logger.log( |  | ||||||
|             "[{:}] [{:04d}/{:04d}] ".format(time_string(), iepoch, args.epochs) |  | ||||||
|             + need_time |  | ||||||
|         ) |  | ||||||
|  |  | ||||||
|         adaptor.zero_grad() |  | ||||||
|  |  | ||||||
|         debug_timestamp = set() |  | ||||||
|         all_meta_losses = [] |  | ||||||
|         for ibatch in range(args.meta_batch): |  | ||||||
|             sampled_timestamp = random.randint(0, train_time_bar) |  | ||||||
|             query_w_container, query_timestamp = pool.query(sampled_timestamp) |  | ||||||
|             # def adapt(self, model, w_container, xs, ys): |  | ||||||
|             seq_datasets = [] |  | ||||||
|             # xs, ys = [], [] |  | ||||||
|             for it in range(sampled_timestamp, sampled_timestamp + args.max_seq): |  | ||||||
|                 xs = env_info["{:}-x".format(it)] |  | ||||||
|                 ys = env_info["{:}-y".format(it)] |  | ||||||
|                 seq_datasets.append(TimeData(it, xs, ys)) |  | ||||||
|             temp_meta_loss, temp_containers = adaptor.adapt( |  | ||||||
|                 base_model, criterion, query_w_container, seq_datasets |  | ||||||
|             ) |  | ||||||
|             all_meta_losses.append(temp_meta_loss) |  | ||||||
|             for temp_time, temp_container, temp_score in temp_containers: |  | ||||||
|                 pool.append(temp_time, temp_container, temp_score) |  | ||||||
|                 debug_timestamp.add(temp_time) |  | ||||||
|         meta_loss = torch.stack(all_meta_losses).mean() |  | ||||||
|         meta_loss.backward() |  | ||||||
|         adaptor.step() |  | ||||||
|  |  | ||||||
|         debug_str = pool.debug_info(debug_timestamp) |  | ||||||
|         logger.log("meta-loss: {:.4f}".format(meta_loss.item())) |  | ||||||
|  |  | ||||||
|         per_epoch_time.update(time.time() - start_time) |  | ||||||
|         start_time = time.time() |  | ||||||
|  |  | ||||||
|     logger.log("-" * 200 + "\n") |  | ||||||
|     logger.close() |  | ||||||
|  |  | ||||||
|  |  | ||||||
| if __name__ == "__main__": |  | ||||||
|     parser = argparse.ArgumentParser("Use the data in the past.") |  | ||||||
|     parser.add_argument( |  | ||||||
|         "--save_dir", |  | ||||||
|         type=str, |  | ||||||
|         default="./outputs/lfna-synthetic/lfna-v1", |  | ||||||
|         help="The checkpoint directory.", |  | ||||||
|     ) |  | ||||||
|     parser.add_argument( |  | ||||||
|         "--init_lr", |  | ||||||
|         type=float, |  | ||||||
|         default=0.1, |  | ||||||
|         help="The initial learning rate for the optimizer (default is Adam)", |  | ||||||
|     ) |  | ||||||
|     parser.add_argument( |  | ||||||
|         "--meta_batch", |  | ||||||
|         type=int, |  | ||||||
|         default=5, |  | ||||||
|         help="The batch size for the meta-model", |  | ||||||
|     ) |  | ||||||
|     parser.add_argument( |  | ||||||
|         "--epochs", |  | ||||||
|         type=int, |  | ||||||
|         default=1000, |  | ||||||
|         help="The total number of epochs.", |  | ||||||
|     ) |  | ||||||
|     parser.add_argument( |  | ||||||
|         "--max_seq", |  | ||||||
|         type=int, |  | ||||||
|         default=5, |  | ||||||
|         help="The maximum length of the sequence.", |  | ||||||
|     ) |  | ||||||
|     parser.add_argument( |  | ||||||
|         "--workers", |  | ||||||
|         type=int, |  | ||||||
|         default=4, |  | ||||||
|         help="The number of data loading workers (default: 4)", |  | ||||||
|     ) |  | ||||||
|     # Random Seed |  | ||||||
|     parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed") |  | ||||||
|     args = parser.parse_args() |  | ||||||
|     if args.rand_seed is None or args.rand_seed < 0: |  | ||||||
|         args.rand_seed = random.randint(1, 100000) |  | ||||||
|     assert args.save_dir is not None, "The save dir argument can not be None" |  | ||||||
|     main(args) |  | ||||||
| @@ -1,50 +0,0 @@ | |||||||
| ##################################################### |  | ||||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # |  | ||||||
| ##################################################### |  | ||||||
| import copy |  | ||||||
| import torch |  | ||||||
|  |  | ||||||
| from xlayers import super_core |  | ||||||
| from xlayers import trunc_normal_ |  | ||||||
| from models.xcore import get_model |  | ||||||
|  |  | ||||||
|  |  | ||||||
| class HyperNet(super_core.SuperModule): |  | ||||||
|     def __init__(self, shape_container, input_embeding, return_container=True): |  | ||||||
|         super(HyperNet, self).__init__() |  | ||||||
|         self._shape_container = shape_container |  | ||||||
|         self._num_layers = len(shape_container) |  | ||||||
|         self._numel_per_layer = [] |  | ||||||
|         for ilayer in range(self._num_layers): |  | ||||||
|             self._numel_per_layer.append(shape_container[ilayer].numel()) |  | ||||||
|  |  | ||||||
|         self.register_parameter( |  | ||||||
|             "_super_layer_embed", |  | ||||||
|             torch.nn.Parameter(torch.Tensor(self._num_layers, input_embeding)), |  | ||||||
|         ) |  | ||||||
|         trunc_normal_(self._super_layer_embed, std=0.02) |  | ||||||
|  |  | ||||||
|         model_kwargs = dict( |  | ||||||
|             input_dim=input_embeding, |  | ||||||
|             output_dim=max(self._numel_per_layer), |  | ||||||
|             hidden_dim=input_embeding * 4, |  | ||||||
|             act_cls="sigmoid", |  | ||||||
|             norm_cls="identity", |  | ||||||
|         ) |  | ||||||
|         self._generator = get_model(dict(model_type="simple_mlp"), **model_kwargs) |  | ||||||
|         self._return_container = return_container |  | ||||||
|         print("generator: {:}".format(self._generator)) |  | ||||||
|  |  | ||||||
|     def forward_raw(self, input): |  | ||||||
|         weights = self._generator(self._super_layer_embed) |  | ||||||
|         if self._return_container: |  | ||||||
|             weights = torch.split(weights, 1) |  | ||||||
|             return self._shape_container.translate(weights) |  | ||||||
|         else: |  | ||||||
|             return weights |  | ||||||
|  |  | ||||||
|     def forward_candidate(self, input): |  | ||||||
|         raise NotImplementedError |  | ||||||
|  |  | ||||||
|     def extra_repr(self) -> str: |  | ||||||
|         return "(_super_layer_embed): {:}".format(list(self._super_layer_embed.shape)) |  | ||||||
| @@ -1,7 +1,7 @@ | |||||||
| ##################################################### | ##################################################### | ||||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # | ||||||
| ##################################################### | ##################################################### | ||||||
| # python exps/LFNA/basic-maml.py --env_version v1 --hidden_dim 16 --inner_step 5 | # python exps/LFNA/basic-maml.py --env_version v1 --inner_step 5 | ||||||
| # python exps/LFNA/basic-maml.py --env_version v2 | # python exps/LFNA/basic-maml.py --env_version v2 | ||||||
| ##################################################### | ##################################################### | ||||||
| import sys, time, copy, torch, random, argparse | import sys, time, copy, torch, random, argparse | ||||||
| @@ -20,7 +20,7 @@ from utils import split_str2indexes | |||||||
|  |  | ||||||
| from procedures.advanced_main import basic_train_fn, basic_eval_fn | from procedures.advanced_main import basic_train_fn, basic_eval_fn | ||||||
| from procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric | from procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric | ||||||
| from datasets.synthetic_core import get_synthetic_env | from datasets.synthetic_core import get_synthetic_env, EnvSampler | ||||||
| from models.xcore import get_model | from models.xcore import get_model | ||||||
| from xlayers import super_core | from xlayers import super_core | ||||||
|  |  | ||||||
| @@ -42,11 +42,10 @@ class MAML: | |||||||
|         self.meta_lr_scheduler = torch.optim.lr_scheduler.MultiStepLR( |         self.meta_lr_scheduler = torch.optim.lr_scheduler.MultiStepLR( | ||||||
|             self.meta_optimizer, |             self.meta_optimizer, | ||||||
|             milestones=[ |             milestones=[ | ||||||
|                 int(epochs * 0.25), |                 int(epochs * 0.8), | ||||||
|                 int(epochs * 0.5), |                 int(epochs * 0.9), | ||||||
|                 int(epochs * 0.75), |  | ||||||
|             ], |             ], | ||||||
|             gamma=0.3, |             gamma=0.1, | ||||||
|         ) |         ) | ||||||
|         self.inner_lr = inner_lr |         self.inner_lr = inner_lr | ||||||
|         self.inner_step = inner_step |         self.inner_step = inner_step | ||||||
| @@ -85,33 +84,27 @@ class MAML: | |||||||
|         self.meta_optimizer.load_state_dict(state_dict["meta_optimizer"]) |         self.meta_optimizer.load_state_dict(state_dict["meta_optimizer"]) | ||||||
|         self.meta_lr_scheduler.load_state_dict(state_dict["meta_lr_scheduler"]) |         self.meta_lr_scheduler.load_state_dict(state_dict["meta_lr_scheduler"]) | ||||||
|  |  | ||||||
|     def save_best(self, iepoch, score): |     def state_dict(self): | ||||||
|         if self._best_info["score"] is None or self._best_info["score"] < score: |         state_dict = dict() | ||||||
|             state_dict = dict( |         state_dict["criterion"] = self.criterion.state_dict() | ||||||
|                 criterion=self.criterion.state_dict(), |         state_dict["network"] = self.network.state_dict() | ||||||
|                 network=self.network.state_dict(), |         state_dict["meta_optimizer"] = self.meta_optimizer.state_dict() | ||||||
|                 meta_optimizer=self.meta_optimizer.state_dict(), |         state_dict["meta_lr_scheduler"] = self.meta_lr_scheduler.state_dict() | ||||||
|                 meta_lr_scheduler=self.meta_lr_scheduler.state_dict(), |         return state_dict | ||||||
|             ) |  | ||||||
|             self._best_info["state_dict"] = state_dict |     def save_best(self, score): | ||||||
|             self._best_info["score"] = score |         success, best_score = self.network.save_best(score) | ||||||
|             self._best_info["iepoch"] = iepoch |         return success, best_score | ||||||
|             is_best = True |  | ||||||
|         else: |     def load_best(self): | ||||||
|             is_best = False |         self.network.load_best() | ||||||
|         return self._best_info, is_best |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def main(args): | def main(args): | ||||||
|     logger, env_info, model_kwargs = lfna_setup(args) |     logger, env_info, model_kwargs = lfna_setup(args) | ||||||
|     model = get_model(dict(model_type="simple_mlp"), **model_kwargs) |     model = get_model(**model_kwargs) | ||||||
|  |  | ||||||
|     total_time = env_info["total"] |     dynamic_env = get_synthetic_env(mode="train", version=args.env_version) | ||||||
|     for i in range(total_time): |  | ||||||
|         for xkey in ("timestamp", "x", "y"): |  | ||||||
|             nkey = "{:}-{:}".format(i, xkey) |  | ||||||
|             assert nkey in env_info, "{:} no in {:}".format(nkey, list(env_info.keys())) |  | ||||||
|     train_time_bar = total_time // 2 |  | ||||||
|  |  | ||||||
|     criterion = torch.nn.MSELoss() |     criterion = torch.nn.MSELoss() | ||||||
|  |  | ||||||
| @@ -120,83 +113,65 @@ def main(args): | |||||||
|     ) |     ) | ||||||
|  |  | ||||||
|     # meta-training |     # meta-training | ||||||
|  |     last_success_epoch = 0 | ||||||
|     per_epoch_time, start_time = AverageMeter(), time.time() |     per_epoch_time, start_time = AverageMeter(), time.time() | ||||||
|     # for iepoch in range(args.epochs): |     for iepoch in range(args.epochs): | ||||||
|     iepoch = 0 |  | ||||||
|     while iepoch < args.epochs: |  | ||||||
|         need_time = "Time Left: {:}".format( |         need_time = "Time Left: {:}".format( | ||||||
|             convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True) |             convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True) | ||||||
|         ) |         ) | ||||||
|         logger.log( |         head_str = ( | ||||||
|             "[{:}] [{:04d}/{:04d}] ".format(time_string(), iepoch, args.epochs) |             "[{:}] [{:04d}/{:04d}] ".format(time_string(), iepoch, args.epochs) | ||||||
|             + need_time |             + need_time | ||||||
|         ) |         ) | ||||||
|  |  | ||||||
|         maml.zero_grad() |         maml.zero_grad() | ||||||
|         batch_indexes, meta_losses = [], [] |         meta_losses = [] | ||||||
|         for ibatch in range(args.meta_batch): |         for ibatch in range(args.meta_batch): | ||||||
|             sampled_timestamp = random.randint(0, train_time_bar) |             future_timestamp = dynamic_env.random_timestamp() | ||||||
|             batch_indexes.append("{:5d}".format(sampled_timestamp)) |             _, (future_x, future_y) = dynamic_env(future_timestamp) | ||||||
|             past_dataset = TimeData( |             past_timestamp = ( | ||||||
|                 sampled_timestamp, |                 future_timestamp - args.prev_time * dynamic_env.timestamp_interval | ||||||
|                 env_info["{:}-x".format(sampled_timestamp)], |  | ||||||
|                 env_info["{:}-y".format(sampled_timestamp)], |  | ||||||
|             ) |             ) | ||||||
|             future_dataset = TimeData( |             _, (past_x, past_y) = dynamic_env(past_timestamp) | ||||||
|                 sampled_timestamp + 1, |  | ||||||
|                 env_info["{:}-x".format(sampled_timestamp + 1)], |             future_container = maml.adapt(TimeData(past_timestamp, past_x, past_y)) | ||||||
|                 env_info["{:}-y".format(sampled_timestamp + 1)], |             future_y_hat = maml.predict(future_x, future_container) | ||||||
|             ) |             future_loss = maml.criterion(future_y_hat, future_y) | ||||||
|             future_container = maml.adapt(past_dataset) |  | ||||||
|             future_y_hat = maml.predict(future_dataset.x, future_container) |  | ||||||
|             future_loss = maml.criterion(future_y_hat, future_dataset.y) |  | ||||||
|             meta_losses.append(future_loss) |             meta_losses.append(future_loss) | ||||||
|         meta_loss = torch.stack(meta_losses).mean() |         meta_loss = torch.stack(meta_losses).mean() | ||||||
|         meta_loss.backward() |         meta_loss.backward() | ||||||
|         maml.step() |         maml.step() | ||||||
|  |  | ||||||
|         logger.log( |         logger.log(head_str + " meta-loss: {:.4f}".format(meta_loss.item())) | ||||||
|             "meta-loss: {:.4f}  batch: {:}".format( |         success, best_score = maml.save_best(-meta_loss.item()) | ||||||
|                 meta_loss.item(), ",".join(batch_indexes) |         if success: | ||||||
|             ) |             logger.log("Achieve the best with best_score = {:.3f}".format(best_score)) | ||||||
|         ) |             save_checkpoint(maml.state_dict(), logger.path("model"), logger) | ||||||
|         best_info, is_best = maml.save_best(iepoch, -meta_loss.item()) |             last_success_epoch = iepoch | ||||||
|         if is_best: |         if iepoch - last_success_epoch >= args.early_stop_thresh: | ||||||
|             save_checkpoint(best_info, logger.path("best"), logger) |             logger.log("Early stop at {:}".format(iepoch)) | ||||||
|             logger.log("Save the best into {:}".format(logger.path("best"))) |             break | ||||||
|         if iepoch >= 10 and ( |  | ||||||
|             torch.isnan(meta_loss).item() or meta_loss.item() >= args.fail_thresh |  | ||||||
|         ): |  | ||||||
|             xdata = torch.load(logger.path("best")) |  | ||||||
|             maml.load_state_dict(xdata["state_dict"]) |  | ||||||
|             iepoch = xdata["iepoch"] |  | ||||||
|             logger.log( |  | ||||||
|                 "The training failed, re-use the previous best epoch [{:}]".format( |  | ||||||
|                     iepoch |  | ||||||
|                 ) |  | ||||||
|             ) |  | ||||||
|         else: |  | ||||||
|             iepoch = iepoch + 1 |  | ||||||
|         per_epoch_time.update(time.time() - start_time) |         per_epoch_time.update(time.time() - start_time) | ||||||
|         start_time = time.time() |         start_time = time.time() | ||||||
|  |  | ||||||
|  |     # meta-test | ||||||
|  |     maml.load_best() | ||||||
|  |     eval_env = env_info["dynamic_env"] | ||||||
|  |     assert eval_env.timestamp_interval == dynamic_env.timestamp_interval | ||||||
|     w_container_per_epoch = dict() |     w_container_per_epoch = dict() | ||||||
|     for idx in range(1, env_info["total"]): |     for idx in range(args.prev_time, len(eval_env)): | ||||||
|         past_dataset = TimeData( |         future_timestamp, (future_x, future_y) = eval_env[idx] | ||||||
|             idx - 1, |         past_timestamp = ( | ||||||
|             env_info["{:}-x".format(idx - 1)], |             future_timestamp.item() - args.prev_time * eval_env.timestamp_interval | ||||||
|             env_info["{:}-y".format(idx - 1)], |  | ||||||
|         ) |         ) | ||||||
|         current_container = maml.adapt(past_dataset) |         _, (past_x, past_y) = eval_env(past_timestamp) | ||||||
|         w_container_per_epoch[idx] = current_container.no_grad_clone() |         future_container = maml.adapt(TimeData(past_timestamp, past_x, past_y)) | ||||||
|  |         w_container_per_epoch[idx] = future_container.no_grad_clone() | ||||||
|         with torch.no_grad(): |         with torch.no_grad(): | ||||||
|             current_x = env_info["{:}-x".format(idx)] |             future_y_hat = maml.predict(future_x, w_container_per_epoch[idx]) | ||||||
|             current_y = env_info["{:}-y".format(idx)] |             future_loss = maml.criterion(future_y_hat, future_y) | ||||||
|             current_y_hat = maml.predict(current_x, w_container_per_epoch[idx]) |         logger.log("meta-test: [{:03d}] -> loss={:.4f}".format(idx, future_loss.item())) | ||||||
|             current_loss = maml.criterion(current_y_hat, current_y) |  | ||||||
|         logger.log( |  | ||||||
|             "meta-test: [{:03d}] -> loss={:.4f}".format(idx, current_loss.item()) |  | ||||||
|         ) |  | ||||||
|     save_checkpoint( |     save_checkpoint( | ||||||
|         {"w_container_per_epoch": w_container_per_epoch}, |         {"w_container_per_epoch": w_container_per_epoch}, | ||||||
|         logger.path(None) / "final-ckp.pth", |         logger.path(None) / "final-ckp.pth", | ||||||
| @@ -224,13 +199,13 @@ if __name__ == "__main__": | |||||||
|     parser.add_argument( |     parser.add_argument( | ||||||
|         "--hidden_dim", |         "--hidden_dim", | ||||||
|         type=int, |         type=int, | ||||||
|         required=True, |         default=16, | ||||||
|         help="The hidden dimension.", |         help="The hidden dimension.", | ||||||
|     ) |     ) | ||||||
|     parser.add_argument( |     parser.add_argument( | ||||||
|         "--meta_lr", |         "--meta_lr", | ||||||
|         type=float, |         type=float, | ||||||
|         default=0.05, |         default=0.01, | ||||||
|         help="The learning rate for the MAML optimizer (default is Adam)", |         help="The learning rate for the MAML optimizer (default is Adam)", | ||||||
|     ) |     ) | ||||||
|     parser.add_argument( |     parser.add_argument( | ||||||
| @@ -242,24 +217,36 @@ if __name__ == "__main__": | |||||||
|     parser.add_argument( |     parser.add_argument( | ||||||
|         "--inner_lr", |         "--inner_lr", | ||||||
|         type=float, |         type=float, | ||||||
|         default=0.01, |         default=0.005, | ||||||
|         help="The learning rate for the inner optimization", |         help="The learning rate for the inner optimization", | ||||||
|     ) |     ) | ||||||
|     parser.add_argument( |     parser.add_argument( | ||||||
|         "--inner_step", type=int, default=1, help="The inner loop steps for MAML." |         "--inner_step", type=int, default=1, help="The inner loop steps for MAML." | ||||||
|     ) |     ) | ||||||
|  |     parser.add_argument( | ||||||
|  |         "--prev_time", | ||||||
|  |         type=int, | ||||||
|  |         default=5, | ||||||
|  |         help="The gap between prev_time and current_timestamp", | ||||||
|  |     ) | ||||||
|     parser.add_argument( |     parser.add_argument( | ||||||
|         "--meta_batch", |         "--meta_batch", | ||||||
|         type=int, |         type=int, | ||||||
|         default=10, |         default=64, | ||||||
|         help="The batch size for the meta-model", |         help="The batch size for the meta-model", | ||||||
|     ) |     ) | ||||||
|     parser.add_argument( |     parser.add_argument( | ||||||
|         "--epochs", |         "--epochs", | ||||||
|         type=int, |         type=int, | ||||||
|         default=1000, |         default=2000, | ||||||
|         help="The total number of epochs.", |         help="The total number of epochs.", | ||||||
|     ) |     ) | ||||||
|  |     parser.add_argument( | ||||||
|  |         "--early_stop_thresh", | ||||||
|  |         type=int, | ||||||
|  |         default=50, | ||||||
|  |         help="The maximum epochs for early stop.", | ||||||
|  |     ) | ||||||
|     parser.add_argument( |     parser.add_argument( | ||||||
|         "--workers", |         "--workers", | ||||||
|         type=int, |         type=int, | ||||||
| @@ -272,7 +259,13 @@ if __name__ == "__main__": | |||||||
|     if args.rand_seed is None or args.rand_seed < 0: |     if args.rand_seed is None or args.rand_seed < 0: | ||||||
|         args.rand_seed = random.randint(1, 100000) |         args.rand_seed = random.randint(1, 100000) | ||||||
|     assert args.save_dir is not None, "The save dir argument can not be None" |     assert args.save_dir is not None, "The save dir argument can not be None" | ||||||
|     args.save_dir = "{:}-s{:}-{:}-d{:}".format( |     args.save_dir = "{:}-s{:}-mlr{:}-d{:}-prev{:}-e{:}-env{:}".format( | ||||||
|         args.save_dir, args.inner_step, args.env_version, args.hidden_dim |         args.save_dir, | ||||||
|  |         args.inner_step, | ||||||
|  |         args.meta_lr, | ||||||
|  |         args.hidden_dim, | ||||||
|  |         args.prev_time, | ||||||
|  |         args.epochs, | ||||||
|  |         args.env_version, | ||||||
|     ) |     ) | ||||||
|     main(args) |     main(args) | ||||||
|   | |||||||
| @@ -1,7 +1,7 @@ | |||||||
| ##################################################### | ##################################################### | ||||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # | ||||||
| ##################################################### | ##################################################### | ||||||
| # python exps/LFNA/basic-prev.py --env_version v1 --hidden_dim 16 --epochs 500 --init_lr 0.1 | # python exps/LFNA/basic-prev.py --env_version v1 --prev_time 5 --hidden_dim 16 --epochs 500 --init_lr 0.1 | ||||||
| # python exps/LFNA/basic-prev.py --env_version v2 --hidden_dim 16 --epochs 1000 --init_lr 0.05 | # python exps/LFNA/basic-prev.py --env_version v2 --hidden_dim 16 --epochs 1000 --init_lr 0.05 | ||||||
| ##################################################### | ##################################################### | ||||||
| import sys, time, copy, torch, random, argparse | import sys, time, copy, torch, random, argparse | ||||||
| @@ -41,7 +41,7 @@ def main(args): | |||||||
|     w_container_per_epoch = dict() |     w_container_per_epoch = dict() | ||||||
|  |  | ||||||
|     per_timestamp_time, start_time = AverageMeter(), time.time() |     per_timestamp_time, start_time = AverageMeter(), time.time() | ||||||
|     for idx in range(1, env_info["total"]): |     for idx in range(args.prev_time, env_info["total"]): | ||||||
|  |  | ||||||
|         need_time = "Time Left: {:}".format( |         need_time = "Time Left: {:}".format( | ||||||
|             convert_secs2time(per_timestamp_time.avg * (env_info["total"] - idx), True) |             convert_secs2time(per_timestamp_time.avg * (env_info["total"] - idx), True) | ||||||
| @@ -53,8 +53,8 @@ def main(args): | |||||||
|             + need_time |             + need_time | ||||||
|         ) |         ) | ||||||
|         # train the same data |         # train the same data | ||||||
|         historical_x = env_info["{:}-x".format(idx - 1)] |         historical_x = env_info["{:}-x".format(idx - args.prev_time)] | ||||||
|         historical_y = env_info["{:}-y".format(idx - 1)] |         historical_y = env_info["{:}-y".format(idx - args.prev_time)] | ||||||
|         # build model |         # build model | ||||||
|         model = get_model(**model_kwargs) |         model = get_model(**model_kwargs) | ||||||
|         print(model) |         print(model) | ||||||
| @@ -160,6 +160,12 @@ if __name__ == "__main__": | |||||||
|         default=0.1, |         default=0.1, | ||||||
|         help="The initial learning rate for the optimizer (default is Adam)", |         help="The initial learning rate for the optimizer (default is Adam)", | ||||||
|     ) |     ) | ||||||
|  |     parser.add_argument( | ||||||
|  |         "--prev_time", | ||||||
|  |         type=int, | ||||||
|  |         default=5, | ||||||
|  |         help="The gap between prev_time and current_timestamp", | ||||||
|  |     ) | ||||||
|     parser.add_argument( |     parser.add_argument( | ||||||
|         "--batch_size", |         "--batch_size", | ||||||
|         type=int, |         type=int, | ||||||
| @@ -184,7 +190,12 @@ if __name__ == "__main__": | |||||||
|     if args.rand_seed is None or args.rand_seed < 0: |     if args.rand_seed is None or args.rand_seed < 0: | ||||||
|         args.rand_seed = random.randint(1, 100000) |         args.rand_seed = random.randint(1, 100000) | ||||||
|     assert args.save_dir is not None, "The save dir argument can not be None" |     assert args.save_dir is not None, "The save dir argument can not be None" | ||||||
|     args.save_dir = "{:}-{:}-d{:}".format( |     args.save_dir = "{:}-d{:}_e{:}_lr{:}-prev{:}-env{:}".format( | ||||||
|         args.save_dir, args.env_version, args.hidden_dim |         args.save_dir, | ||||||
|  |         args.hidden_dim, | ||||||
|  |         args.epochs, | ||||||
|  |         args.init_lr, | ||||||
|  |         args.prev_time, | ||||||
|  |         args.env_version, | ||||||
|     ) |     ) | ||||||
|     main(args) |     main(args) | ||||||
|   | |||||||
| @@ -41,7 +41,7 @@ def main(args): | |||||||
|     w_container_per_epoch = dict() |     w_container_per_epoch = dict() | ||||||
|  |  | ||||||
|     per_timestamp_time, start_time = AverageMeter(), time.time() |     per_timestamp_time, start_time = AverageMeter(), time.time() | ||||||
|     for idx in range(env_info["total"]): |     for idx in range(1, env_info["total"]): | ||||||
|  |  | ||||||
|         need_time = "Time Left: {:}".format( |         need_time = "Time Left: {:}".format( | ||||||
|             convert_secs2time(per_timestamp_time.avg * (env_info["total"] - idx), True) |             convert_secs2time(per_timestamp_time.avg * (env_info["total"] - idx), True) | ||||||
| @@ -184,7 +184,7 @@ if __name__ == "__main__": | |||||||
|     if args.rand_seed is None or args.rand_seed < 0: |     if args.rand_seed is None or args.rand_seed < 0: | ||||||
|         args.rand_seed = random.randint(1, 100000) |         args.rand_seed = random.randint(1, 100000) | ||||||
|     assert args.save_dir is not None, "The save dir argument can not be None" |     assert args.save_dir is not None, "The save dir argument can not be None" | ||||||
|     args.save_dir = "{:}-{:}-d{:}".format( |     args.save_dir = "{:}-d{:}_e{:}_lr{:}-env{:}".format( | ||||||
|         args.save_dir, args.env_version, args.hidden_dim |         args.save_dir, args.hidden_dim, args.epochs, args.init_lr, args.env_version | ||||||
|     ) |     ) | ||||||
|     main(args) |     main(args) | ||||||
|   | |||||||
| @@ -157,11 +157,11 @@ def main(args): | |||||||
|         per_epoch_time.update(time.time() - start_time) |         per_epoch_time.update(time.time() - start_time) | ||||||
|         start_time = time.time() |         start_time = time.time() | ||||||
|  |  | ||||||
|     # meta-training |     # meta-test | ||||||
|     meta_model.load_best() |     meta_model.load_best() | ||||||
|     eval_env = env_info["dynamic_env"] |     eval_env = env_info["dynamic_env"] | ||||||
|     w_container_per_epoch = dict() |     w_container_per_epoch = dict() | ||||||
|     for idx in range(args.seq_length, env_info["total"]): |     for idx in range(args.seq_length, len(eval_env)): | ||||||
|         # build-timestamp |         # build-timestamp | ||||||
|         future_time = env_info["{:}-timestamp".format(idx)] |         future_time = env_info["{:}-timestamp".format(idx)] | ||||||
|         time_seqs = [] |         time_seqs = [] | ||||||
| @@ -176,8 +176,8 @@ def main(args): | |||||||
|             future_container = seq_containers[-1] |             future_container = seq_containers[-1] | ||||||
|             w_container_per_epoch[idx] = future_container.no_grad_clone() |             w_container_per_epoch[idx] = future_container.no_grad_clone() | ||||||
|             # evaluation |             # evaluation | ||||||
|             future_x = env_info["{:}-x".format(idx)] |             future_x = env_info["{:}-x".format(idx)].to(args.device) | ||||||
|             future_y = env_info["{:}-y".format(idx)] |             future_y = env_info["{:}-y".format(idx)].to(args.device) | ||||||
|             future_y_hat = base_model.forward_with_container( |             future_y_hat = base_model.forward_with_container( | ||||||
|                 future_x, w_container_per_epoch[idx] |                 future_x, w_container_per_epoch[idx] | ||||||
|             ) |             ) | ||||||
| @@ -299,12 +299,12 @@ if __name__ == "__main__": | |||||||
|     if args.rand_seed is None or args.rand_seed < 0: |     if args.rand_seed is None or args.rand_seed < 0: | ||||||
|         args.rand_seed = random.randint(1, 100000) |         args.rand_seed = random.randint(1, 100000) | ||||||
|     assert args.save_dir is not None, "The save dir argument can not be None" |     assert args.save_dir is not None, "The save dir argument can not be None" | ||||||
|     args.save_dir = "{:}-{:}-d{:}_{:}_{:}-e{:}".format( |     args.save_dir = "{:}-d{:}_{:}_{:}-e{:}-env{:}".format( | ||||||
|         args.save_dir, |         args.save_dir, | ||||||
|         args.env_version, |  | ||||||
|         args.hidden_dim, |         args.hidden_dim, | ||||||
|         args.layer_dim, |         args.layer_dim, | ||||||
|         args.time_dim, |         args.time_dim, | ||||||
|         args.epochs, |         args.epochs, | ||||||
|  |         args.env_version, | ||||||
|     ) |     ) | ||||||
|     main(args) |     main(args) | ||||||
|   | |||||||
| @@ -237,18 +237,20 @@ def compare_algs(save_dir, version, alg_dir="./outputs/lfna-synthetic"): | |||||||
|     env_info = torch.load(cache_path) |     env_info = torch.load(cache_path) | ||||||
|  |  | ||||||
|     alg_name2dir = OrderedDict() |     alg_name2dir = OrderedDict() | ||||||
|     alg_name2dir["Optimal"] = "use-same-timestamp" |  | ||||||
|     # alg_name2dir["Supervised Learning (History Data)"] = "use-all-past-data" |     # alg_name2dir["Supervised Learning (History Data)"] = "use-all-past-data" | ||||||
|     # alg_name2dir["MAML"] = "use-maml-s1" |     # alg_name2dir["MAML"] = "use-maml-s1" | ||||||
|     # alg_name2dir["LFNA (fix init)"] = "lfna-fix-init" |     # alg_name2dir["LFNA (fix init)"] = "lfna-fix-init" | ||||||
|     alg_name2dir["LFNA (debug)"] = "lfna-tall-hpnet" |  | ||||||
|     alg_name2all_containers = OrderedDict() |  | ||||||
|     if version == "v1": |     if version == "v1": | ||||||
|         poststr = "v1-d16" |         # alg_name2dir["Optimal"] = "use-same-timestamp" | ||||||
|  |         alg_name2dir["LFNA"] = "lfna-battle-v1-d16_16_16-e200" | ||||||
|  |         alg_name2dir[ | ||||||
|  |             "Previous Timestamp" | ||||||
|  |         ] = "use-prev-timestamp-d16_e500_lr0.1-prev5-envv1" | ||||||
|     else: |     else: | ||||||
|         raise ValueError("Invalid version: {:}".format(version)) |         raise ValueError("Invalid version: {:}".format(version)) | ||||||
|  |     alg_name2all_containers = OrderedDict() | ||||||
|     for idx_alg, (alg, xdir) in enumerate(alg_name2dir.items()): |     for idx_alg, (alg, xdir) in enumerate(alg_name2dir.items()): | ||||||
|         ckp_path = Path(alg_dir) / "{:}-{:}".format(xdir, poststr) / "final-ckp.pth" |         ckp_path = Path(alg_dir) / str(xdir) / "final-ckp.pth" | ||||||
|         xdata = torch.load(ckp_path, map_location="cpu") |         xdata = torch.load(ckp_path, map_location="cpu") | ||||||
|         alg_name2all_containers[alg] = xdata["w_container_per_epoch"] |         alg_name2all_containers[alg] = xdata["w_container_per_epoch"] | ||||||
|     # load the basic model |     # load the basic model | ||||||
| @@ -267,11 +269,11 @@ def compare_algs(save_dir, version, alg_dir="./outputs/lfna-synthetic"): | |||||||
|     dynamic_env = env_info["dynamic_env"] |     dynamic_env = env_info["dynamic_env"] | ||||||
|     min_t, max_t = dynamic_env.min_timestamp, dynamic_env.max_timestamp |     min_t, max_t = dynamic_env.min_timestamp, dynamic_env.max_timestamp | ||||||
|  |  | ||||||
|     linewidths = 10 |     linewidths, skip = 10, 5 | ||||||
|     for idx, (timestamp, (ori_allx, ori_ally)) in enumerate( |     for idx, (timestamp, (ori_allx, ori_ally)) in enumerate( | ||||||
|         tqdm(dynamic_env, ncols=50) |         tqdm(dynamic_env, ncols=50) | ||||||
|     ): |     ): | ||||||
|         if idx == 0: |         if idx <= skip: | ||||||
|             continue |             continue | ||||||
|         fig = plt.figure(figsize=figsize) |         fig = plt.figure(figsize=figsize) | ||||||
|         cur_ax = fig.add_subplot(2, 1, 1) |         cur_ax = fig.add_subplot(2, 1, 1) | ||||||
| @@ -335,9 +337,9 @@ def compare_algs(save_dir, version, alg_dir="./outputs/lfna-synthetic"): | |||||||
|         cur_ax.set_ylim(0, 10) |         cur_ax.set_ylim(0, 10) | ||||||
|         cur_ax.legend(loc=1, fontsize=LegendFontsize) |         cur_ax.legend(loc=1, fontsize=LegendFontsize) | ||||||
|  |  | ||||||
|         pdf_save_path = save_dir / "pdf" / "v{:}-{:05d}.pdf".format(version, idx) |         pdf_save_path = save_dir / "pdf" / "v{:}-{:05d}.pdf".format(version, idx - skip) | ||||||
|         fig.savefig(str(pdf_save_path), dpi=dpi, bbox_inches="tight", format="pdf") |         fig.savefig(str(pdf_save_path), dpi=dpi, bbox_inches="tight", format="pdf") | ||||||
|         png_save_path = save_dir / "png" / "v{:}-{:05d}.png".format(version, idx) |         png_save_path = save_dir / "png" / "v{:}-{:05d}.png".format(version, idx - skip) | ||||||
|         fig.savefig(str(png_save_path), dpi=dpi, bbox_inches="tight", format="png") |         fig.savefig(str(png_save_path), dpi=dpi, bbox_inches="tight", format="png") | ||||||
|         plt.close("all") |         plt.close("all") | ||||||
|     save_dir = save_dir.resolve() |     save_dir = save_dir.resolve() | ||||||
|   | |||||||
| @@ -80,6 +80,12 @@ class SyntheticDEnv(data.Dataset): | |||||||
|     def timestamp_interval(self): |     def timestamp_interval(self): | ||||||
|         return self._timestamp_generator.interval |         return self._timestamp_generator.interval | ||||||
|  |  | ||||||
|  |     def random_timestamp(self): | ||||||
|  |         return ( | ||||||
|  |             random.random() * (self.max_timestamp - self.min_timestamp) | ||||||
|  |             + self.min_timestamp | ||||||
|  |         ) | ||||||
|  |  | ||||||
|     def reset_max_seq_length(self, seq_length): |     def reset_max_seq_length(self, seq_length): | ||||||
|         self._seq_length = seq_length |         self._seq_length = seq_length | ||||||
|  |  | ||||||
|   | |||||||
| @@ -56,11 +56,11 @@ class TimeStamp(UnifiedSplit, data.Dataset): | |||||||
|  |  | ||||||
|     @property |     @property | ||||||
|     def min_timestamp(self): |     def min_timestamp(self): | ||||||
|         return self._min_timestamp |         return self._min_timestamp + self._interval * min(self._indexes) | ||||||
|  |  | ||||||
|     @property |     @property | ||||||
|     def max_timestamp(self): |     def max_timestamp(self): | ||||||
|         return self._max_timestamp |         return self._min_timestamp + self._interval * max(self._indexes) | ||||||
|  |  | ||||||
|     @property |     @property | ||||||
|     def interval(self): |     def interval(self): | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user