Prototype MAML
This commit is contained in:
parent
5457dcf042
commit
755c7c90cf
@ -1,8 +1,8 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
|
||||
#####################################################
|
||||
# python exps/LFNA/basic-maml.py --env_version v1 #
|
||||
# python exps/LFNA/basic-maml.py --env_version v2 #
|
||||
# python exps/LFNA/basic-maml.py --env_version v1 --hidden_dim 16 --inner_step 5
|
||||
# python exps/LFNA/basic-maml.py --env_version v2
|
||||
#####################################################
|
||||
import sys, time, copy, torch, random, argparse
|
||||
from tqdm import tqdm
|
||||
@ -30,73 +30,71 @@ from lfna_utils import lfna_setup, TimeData
|
||||
class MAML:
|
||||
"""A LFNA meta-model that uses the MLP as delta-net."""
|
||||
|
||||
def __init__(self, container, criterion, meta_lr, inner_lr=0.01, inner_step=1):
|
||||
def __init__(
|
||||
self, network, criterion, epochs, meta_lr, inner_lr=0.01, inner_step=1
|
||||
):
|
||||
self.criterion = criterion
|
||||
self.container = container
|
||||
# self.container = container
|
||||
self.network = network
|
||||
self.meta_optimizer = torch.optim.Adam(
|
||||
self.container.parameters(), lr=meta_lr, amsgrad=True
|
||||
self.network.parameters(), lr=meta_lr, amsgrad=True
|
||||
)
|
||||
self.meta_lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
|
||||
optimizer,
|
||||
milestones=[
|
||||
int(epochs * 0.25),
|
||||
int(epochs * 0.5),
|
||||
int(epochs * 0.75),
|
||||
],
|
||||
gamma=0.3,
|
||||
)
|
||||
self.inner_lr = inner_lr
|
||||
self.inner_step = inner_step
|
||||
self._best_info = dict(state_dict=None, score=None)
|
||||
print("There are {:} weights.".format(w_container.numel()))
|
||||
|
||||
def adapt(self, model, dataset):
|
||||
def adapt(self, dataset):
|
||||
# create a container for the future timestamp
|
||||
y_hat = model.forward_with_container(dataset.x, self.container)
|
||||
loss = self.criterion(y_hat, dataset.y)
|
||||
grads = torch.autograd.grad(loss, self.container.parameters())
|
||||
container = self.network.get_w_container()
|
||||
|
||||
fast_container = self.container.additive(
|
||||
[-self.inner_lr * grad for grad in grads]
|
||||
)
|
||||
import pdb
|
||||
for k in range(0, self.inner_step):
|
||||
y_hat = self.network.forward_with_container(dataset.x, container)
|
||||
loss = self.criterion(y_hat, dataset.y)
|
||||
grads = torch.autograd.grad(loss, container.parameters())
|
||||
|
||||
pdb.set_trace()
|
||||
w_container.requires_grad_(True)
|
||||
containers = [w_container]
|
||||
for idx, dataset in enumerate(seq_datasets):
|
||||
x, y = dataset.x, dataset.y
|
||||
y_hat = model.forward_with_container(x, containers[-1])
|
||||
loss = criterion(y_hat, y)
|
||||
gradients = torch.autograd.grad(loss, containers[-1].tensors)
|
||||
with torch.no_grad():
|
||||
flatten_w = containers[-1].flatten().view(-1, 1)
|
||||
flatten_g = containers[-1].flatten(gradients).view(-1, 1)
|
||||
input_statistics = torch.tensor([x.mean(), x.std()]).view(1, 2)
|
||||
input_statistics = input_statistics.expand(flatten_w.numel(), -1)
|
||||
delta_inputs = torch.cat((flatten_w, flatten_g, input_statistics), dim=-1)
|
||||
delta = self.delta_net(delta_inputs).view(-1)
|
||||
delta = torch.clamp(delta, -0.5, 0.5)
|
||||
unflatten_delta = containers[-1].unflatten(delta)
|
||||
future_container = containers[-1].no_grad_clone().additive(unflatten_delta)
|
||||
# future_container = containers[-1].additive(unflatten_delta)
|
||||
containers.append(future_container)
|
||||
# containers = containers[1:]
|
||||
meta_loss = []
|
||||
temp_containers = []
|
||||
for idx, dataset in enumerate(seq_datasets):
|
||||
if idx == 0:
|
||||
continue
|
||||
current_container = containers[idx]
|
||||
y_hat = model.forward_with_container(dataset.x, current_container)
|
||||
loss = criterion(y_hat, dataset.y)
|
||||
meta_loss.append(loss)
|
||||
temp_containers.append((dataset.timestamp, current_container, -loss.item()))
|
||||
meta_loss = sum(meta_loss)
|
||||
w_container.requires_grad_(False)
|
||||
# meta_loss.backward()
|
||||
# self.meta_optimizer.step()
|
||||
return meta_loss, temp_containers
|
||||
container = container.additive([-self.inner_lr * grad for grad in grads])
|
||||
return container
|
||||
|
||||
def predict(self, x, container=None):
|
||||
if container is not None:
|
||||
y_hat = self.network.forward_with_container(x, container)
|
||||
else:
|
||||
y_hat = self.network(x)
|
||||
return y_hat
|
||||
|
||||
def step(self):
|
||||
torch.nn.utils.clip_grad_norm_(self.delta_net.parameters(), 1.0)
|
||||
torch.nn.utils.clip_grad_norm_(self.container.parameters(), 1.0)
|
||||
self.meta_optimizer.step()
|
||||
self.meta_lr_scheduler.step()
|
||||
|
||||
def zero_grad(self):
|
||||
self.meta_optimizer.zero_grad()
|
||||
|
||||
def save_best(self, network, score):
|
||||
if self._best_info["score"] is None or self._best_info["score"] < score:
|
||||
state_dict = dict(
|
||||
criterion=criterion,
|
||||
network=network.state_dict(),
|
||||
meta_optimizer=self.meta_optimizer.state_dict(),
|
||||
meta_lr_scheduler=self.meta_lr_scheduler.state_dict(),
|
||||
)
|
||||
self._best_info["state_dict"] = state_dict
|
||||
self._best_info["score"] = score
|
||||
|
||||
|
||||
def main(args):
|
||||
logger, env_info = lfna_setup(args)
|
||||
logger, env_info, model_kwargs = lfna_setup(args)
|
||||
model = get_model(dict(model_type="simple_mlp"), **model_kwargs)
|
||||
|
||||
total_time = env_info["total"]
|
||||
for i in range(total_time):
|
||||
@ -104,19 +102,12 @@ def main(args):
|
||||
nkey = "{:}-{:}".format(i, xkey)
|
||||
assert nkey in env_info, "{:} no in {:}".format(nkey, list(env_info.keys()))
|
||||
train_time_bar = total_time // 2
|
||||
base_model = get_model(
|
||||
dict(model_type="simple_mlp"),
|
||||
act_cls="leaky_relu",
|
||||
norm_cls="identity",
|
||||
input_dim=1,
|
||||
output_dim=1,
|
||||
)
|
||||
|
||||
w_container = base_model.get_w_container()
|
||||
criterion = torch.nn.MSELoss()
|
||||
print("There are {:} weights.".format(w_container.numel()))
|
||||
|
||||
maml = MAML(w_container, criterion, args.meta_lr, args.inner_lr, args.inner_step)
|
||||
maml = MAML(
|
||||
model, criterion, args.epochs, args.meta_lr, args.inner_lr, args.inner_step
|
||||
)
|
||||
|
||||
# meta-training
|
||||
per_epoch_time, start_time = AverageMeter(), time.time()
|
||||
@ -131,8 +122,7 @@ def main(args):
|
||||
)
|
||||
|
||||
maml.zero_grad()
|
||||
|
||||
all_meta_losses = []
|
||||
meta_losses = []
|
||||
for ibatch in range(args.meta_batch):
|
||||
sampled_timestamp = random.randint(0, train_time_bar)
|
||||
past_dataset = TimeData(
|
||||
@ -145,21 +135,23 @@ def main(args):
|
||||
env_info["{:}-x".format(sampled_timestamp + 1)],
|
||||
env_info["{:}-y".format(sampled_timestamp + 1)],
|
||||
)
|
||||
maml.adapt(base_model, past_dataset)
|
||||
import pdb
|
||||
|
||||
pdb.set_trace()
|
||||
|
||||
meta_loss = torch.stack(all_meta_losses).mean()
|
||||
future_container = maml.adapt(model, past_dataset)
|
||||
future_y_hat = maml.predict(future_dataset.x, future_container)
|
||||
future_loss = maml.criterion(future_y_hat, future_dataset.y)
|
||||
meta_losses.append(future_loss)
|
||||
meta_loss = torch.stack(meta_losses).mean()
|
||||
meta_loss.backward()
|
||||
adaptor.step()
|
||||
maml.step()
|
||||
|
||||
debug_str = pool.debug_info(debug_timestamp)
|
||||
logger.log("meta-loss: {:.4f}".format(meta_loss.item()))
|
||||
|
||||
per_epoch_time.update(time.time() - start_time)
|
||||
start_time = time.time()
|
||||
|
||||
import pdb
|
||||
|
||||
pdb.set_trace()
|
||||
|
||||
logger.log("-" * 200 + "\n")
|
||||
logger.close()
|
||||
|
||||
@ -187,7 +179,7 @@ if __name__ == "__main__":
|
||||
parser.add_argument(
|
||||
"--meta_lr",
|
||||
type=float,
|
||||
default=0.01,
|
||||
default=0.1,
|
||||
help="The learning rate for the MAML optimizer (default is Adam)",
|
||||
)
|
||||
parser.add_argument(
|
||||
@ -202,7 +194,7 @@ if __name__ == "__main__":
|
||||
parser.add_argument(
|
||||
"--meta_batch",
|
||||
type=int,
|
||||
default=5,
|
||||
default=10,
|
||||
help="The batch size for the meta-model",
|
||||
)
|
||||
parser.add_argument(
|
||||
@ -223,7 +215,7 @@ if __name__ == "__main__":
|
||||
if args.rand_seed is None or args.rand_seed < 0:
|
||||
args.rand_seed = random.randint(1, 100000)
|
||||
assert args.save_dir is not None, "The save dir argument can not be None"
|
||||
args.save_dir = "{:}-{:}-d{:}".format(
|
||||
args.save_dir, args.env_version, args.hidden_dim
|
||||
args.save_dir = "{:}-s{:}-{:}-d{:}".format(
|
||||
args.save_dir, args.inner_step, args.env_version, args.hidden_dim
|
||||
)
|
||||
main(args)
|
||||
|
Loading…
Reference in New Issue
Block a user