Update codes
This commit is contained in:
		| @@ -1,228 +0,0 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # | ||||
| ##################################################### | ||||
| # python exps/LFNA/lfna-debug-hpnet.py --env_version v1 --hidden_dim 16 --meta_batch 64 --device cuda | ||||
| ##################################################### | ||||
| import sys, time, copy, torch, random, argparse | ||||
| from tqdm import tqdm | ||||
| from copy import deepcopy | ||||
| from pathlib import Path | ||||
|  | ||||
| lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve() | ||||
| if str(lib_dir) not in sys.path: | ||||
|     sys.path.insert(0, str(lib_dir)) | ||||
| from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint | ||||
| from log_utils import time_string | ||||
| from log_utils import AverageMeter, convert_secs2time | ||||
|  | ||||
| from utils import split_str2indexes | ||||
|  | ||||
| from procedures.advanced_main import basic_train_fn, basic_eval_fn | ||||
| from procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric | ||||
| from datasets.synthetic_core import get_synthetic_env | ||||
| from models.xcore import get_model | ||||
| from xlayers import super_core, trunc_normal_ | ||||
|  | ||||
|  | ||||
| from lfna_utils import lfna_setup, train_model, TimeData | ||||
|  | ||||
| from lfna_models import HyperNet | ||||
|  | ||||
|  | ||||
| def main(args): | ||||
|     logger, env_info, model_kwargs = lfna_setup(args) | ||||
|     dynamic_env = env_info["dynamic_env"] | ||||
|     model = get_model(**model_kwargs) | ||||
|     criterion = torch.nn.MSELoss() | ||||
|  | ||||
|     shape_container = model.get_w_container().to_shape_container() | ||||
|     hypernet = HyperNet( | ||||
|         shape_container, args.hidden_dim, args.task_dim, len(dynamic_env) | ||||
|     ) | ||||
|     hypernet = hypernet.to(args.device) | ||||
|  | ||||
|     logger.log( | ||||
|         "{:} There are {:} weights in the base-model.".format( | ||||
|             time_string(), model.numel() | ||||
|         ) | ||||
|     ) | ||||
|     logger.log( | ||||
|         "{:} There are {:} weights in the meta-model.".format( | ||||
|             time_string(), hypernet.numel() | ||||
|         ) | ||||
|     ) | ||||
|  | ||||
|     for i in range(len(dynamic_env)): | ||||
|         env_info["{:}-x".format(i)] = env_info["{:}-x".format(i)].to(args.device) | ||||
|         env_info["{:}-y".format(i)] = env_info["{:}-y".format(i)].to(args.device) | ||||
|     logger.log("{:} Convert to device-{:} done".format(time_string(), args.device)) | ||||
|  | ||||
|     optimizer = torch.optim.Adam( | ||||
|         hypernet.parameters(), lr=args.init_lr, weight_decay=1e-5, amsgrad=True | ||||
|     ) | ||||
|     lr_scheduler = torch.optim.lr_scheduler.MultiStepLR( | ||||
|         optimizer, | ||||
|         milestones=[ | ||||
|             int(args.epochs * 0.8), | ||||
|             int(args.epochs * 0.9), | ||||
|         ], | ||||
|         gamma=0.1, | ||||
|     ) | ||||
|  | ||||
|     # LFNA meta-training | ||||
|     per_epoch_time, start_time = AverageMeter(), time.time() | ||||
|     last_success_epoch = 0 | ||||
|     for iepoch in range(args.epochs): | ||||
|  | ||||
|         need_time = "Time Left: {:}".format( | ||||
|             convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True) | ||||
|         ) | ||||
|         head_str = ( | ||||
|             "[{:}] [{:04d}/{:04d}] ".format(time_string(), iepoch, args.epochs) | ||||
|             + need_time | ||||
|         ) | ||||
|         # One Epoch | ||||
|         loss_meter = AverageMeter() | ||||
|         for istep in range(args.per_epoch_step): | ||||
|             losses = [] | ||||
|             for ibatch in range(args.meta_batch): | ||||
|                 cur_time = random.randint(0, len(dynamic_env) - 1) | ||||
|                 cur_container = hypernet(cur_time) | ||||
|                 cur_x = env_info["{:}-x".format(cur_time)] | ||||
|                 cur_y = env_info["{:}-y".format(cur_time)] | ||||
|                 cur_dataset = TimeData(cur_time, cur_x, cur_y) | ||||
|  | ||||
|                 preds = model.forward_with_container(cur_dataset.x, cur_container) | ||||
|                 optimizer.zero_grad() | ||||
|                 loss = criterion(preds, cur_dataset.y) | ||||
|  | ||||
|                 losses.append(loss) | ||||
|             final_loss = torch.stack(losses).mean() | ||||
|             final_loss.backward() | ||||
|             optimizer.step() | ||||
|             lr_scheduler.step() | ||||
|             loss_meter.update(final_loss.item()) | ||||
|         success, best_score = hypernet.save_best(-loss_meter.avg) | ||||
|         if success: | ||||
|             logger.log("Achieve the best with best_score = {:.3f}".format(best_score)) | ||||
|             last_success_epoch = iepoch | ||||
|         if iepoch - last_success_epoch >= args.early_stop_thresh: | ||||
|             logger.log("Early stop at {:}".format(iepoch)) | ||||
|             break | ||||
|         logger.log( | ||||
|             head_str | ||||
|             + " meta-loss: {:.4f} ({:.4f}) :: lr={:.5f}, batch={:}".format( | ||||
|                 loss_meter.avg, | ||||
|                 loss_meter.val, | ||||
|                 min(lr_scheduler.get_last_lr()), | ||||
|                 len(losses), | ||||
|             ) | ||||
|         ) | ||||
|  | ||||
|         save_checkpoint( | ||||
|             { | ||||
|                 "hypernet": hypernet.state_dict(), | ||||
|                 "lr_scheduler": lr_scheduler.state_dict(), | ||||
|                 "iepoch": iepoch, | ||||
|             }, | ||||
|             logger.path("model"), | ||||
|             logger, | ||||
|         ) | ||||
|         per_epoch_time.update(time.time() - start_time) | ||||
|         start_time = time.time() | ||||
|  | ||||
|     print(model) | ||||
|     print(hypernet) | ||||
|     hypernet.load_best() | ||||
|  | ||||
|     w_container_per_epoch = dict() | ||||
|     for idx in range(0, env_info["total"]): | ||||
|         future_x = env_info["{:}-x".format(idx)] | ||||
|         future_y = env_info["{:}-y".format(idx)] | ||||
|         future_container = hypernet(idx) | ||||
|         w_container_per_epoch[idx] = future_container.no_grad_clone() | ||||
|         with torch.no_grad(): | ||||
|             future_y_hat = model.forward_with_container( | ||||
|                 future_x, w_container_per_epoch[idx] | ||||
|             ) | ||||
|             future_loss = criterion(future_y_hat, future_y) | ||||
|         logger.log("meta-test: [{:03d}] -> loss={:.4f}".format(idx, future_loss.item())) | ||||
|  | ||||
|     save_checkpoint( | ||||
|         {"w_container_per_epoch": w_container_per_epoch}, | ||||
|         logger.path(None) / "final-ckp.pth", | ||||
|         logger, | ||||
|     ) | ||||
|  | ||||
|     logger.log("-" * 200 + "\n") | ||||
|     logger.close() | ||||
|  | ||||
|  | ||||
| if __name__ == "__main__": | ||||
|     parser = argparse.ArgumentParser("Use the data in the past.") | ||||
|     parser.add_argument( | ||||
|         "--save_dir", | ||||
|         type=str, | ||||
|         default="./outputs/lfna-synthetic/lfna-debug-hpnet", | ||||
|         help="The checkpoint directory.", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--env_version", | ||||
|         type=str, | ||||
|         required=True, | ||||
|         help="The synthetic enviornment version.", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--hidden_dim", | ||||
|         type=int, | ||||
|         required=True, | ||||
|         help="The hidden dimension.", | ||||
|     ) | ||||
|     ##### | ||||
|     parser.add_argument( | ||||
|         "--init_lr", | ||||
|         type=float, | ||||
|         default=0.01, | ||||
|         help="The initial learning rate for the optimizer (default is Adam)", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--meta_batch", | ||||
|         type=int, | ||||
|         default=64, | ||||
|         help="The batch size for the meta-model", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--early_stop_thresh", | ||||
|         type=int, | ||||
|         default=100, | ||||
|         help="The maximum epochs for early stop.", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--epochs", | ||||
|         type=int, | ||||
|         default=2000, | ||||
|         help="The total number of epochs.", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--per_epoch_step", | ||||
|         type=int, | ||||
|         default=20, | ||||
|         help="The total number of epochs.", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--device", | ||||
|         type=str, | ||||
|         default="cpu", | ||||
|         help="", | ||||
|     ) | ||||
|     # Random Seed | ||||
|     parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed") | ||||
|     args = parser.parse_args() | ||||
|     if args.rand_seed is None or args.rand_seed < 0: | ||||
|         args.rand_seed = random.randint(1, 100000) | ||||
|     assert args.save_dir is not None, "The save dir argument can not be None" | ||||
|     args.task_dim = args.hidden_dim | ||||
|     args.save_dir = "{:}-{:}-d{:}".format( | ||||
|         args.save_dir, args.env_version, args.hidden_dim | ||||
|     ) | ||||
|     main(args) | ||||
| @@ -1,476 +0,0 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # | ||||
| ##################################################### | ||||
| # python exps/LFNA/lfna-debug.py --env_version v1 --workers 0 | ||||
| # python exps/LFNA/lfna.py --env_version v1 --device cuda --lr 0.001 | ||||
| # python exps/LFNA/lfna.py --env_version v1 --device cuda --lr 0.002 | ||||
| ##################################################### | ||||
| import sys, time, copy, torch, random, argparse | ||||
| from tqdm import tqdm | ||||
| from copy import deepcopy | ||||
| from pathlib import Path | ||||
|  | ||||
| lib_dir = (Path(__file__).parent / ".." / "..").resolve() | ||||
| print("LIB-DIR: {:}".format(lib_dir)) | ||||
| if str(lib_dir) not in sys.path: | ||||
|     sys.path.insert(0, str(lib_dir)) | ||||
|  | ||||
| from xautodl.procedures import ( | ||||
|     prepare_seed, | ||||
|     prepare_logger, | ||||
|     save_checkpoint, | ||||
|     copy_checkpoint, | ||||
| ) | ||||
| from xautodl.log_utils import time_string | ||||
| from xautodl.log_utils import AverageMeter, convert_secs2time | ||||
|  | ||||
| from xautodl.utils import split_str2indexes | ||||
|  | ||||
| from xautodl.procedures.advanced_main import basic_train_fn, basic_eval_fn | ||||
| from xautodl.procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric | ||||
| from xautodl.datasets.synthetic_core import get_synthetic_env, EnvSampler | ||||
| from xautodl.models.xcore import get_model | ||||
| from xautodl.xlayers import super_core, trunc_normal_ | ||||
|  | ||||
| from lfna_utils import lfna_setup, train_model, TimeData | ||||
| from lfna_meta_model import LFNA_Meta | ||||
|  | ||||
|  | ||||
| def epoch_train(loader, meta_model, base_model, optimizer, criterion, device, logger): | ||||
|     base_model.train() | ||||
|     meta_model.train() | ||||
|     loss_meter = AverageMeter() | ||||
|     for ibatch, batch_data in enumerate(loader): | ||||
|         timestamps, (batch_seq_inputs, batch_seq_targets) = batch_data | ||||
|         timestamps = timestamps.squeeze(dim=-1).to(device) | ||||
|         batch_seq_inputs = batch_seq_inputs.to(device) | ||||
|         batch_seq_targets = batch_seq_targets.to(device) | ||||
|  | ||||
|         optimizer.zero_grad() | ||||
|  | ||||
|         batch_seq_containers = meta_model(timestamps) | ||||
|         losses = [] | ||||
|         for seq_containers, seq_inputs, seq_targets in zip( | ||||
|             batch_seq_containers, batch_seq_inputs, batch_seq_targets | ||||
|         ): | ||||
|             for container, inputs, targets in zip( | ||||
|                 seq_containers, seq_inputs, seq_targets | ||||
|             ): | ||||
|                 predictions = base_model.forward_with_container(inputs, container) | ||||
|                 loss = criterion(predictions, targets) | ||||
|                 losses.append(loss) | ||||
|         final_loss = torch.stack(losses).mean() | ||||
|         final_loss.backward() | ||||
|         optimizer.step() | ||||
|         loss_meter.update(final_loss.item()) | ||||
|     return loss_meter | ||||
|  | ||||
|  | ||||
| def epoch_evaluate(loader, meta_model, base_model, criterion, device, logger): | ||||
|     with torch.no_grad(): | ||||
|         base_model.eval() | ||||
|         meta_model.eval() | ||||
|         loss_meter = AverageMeter() | ||||
|         for ibatch, batch_data in enumerate(loader): | ||||
|             timestamps, (batch_seq_inputs, batch_seq_targets) = batch_data | ||||
|             timestamps = timestamps.squeeze(dim=-1).to(device) | ||||
|             batch_seq_inputs = batch_seq_inputs.to(device) | ||||
|             batch_seq_targets = batch_seq_targets.to(device) | ||||
|  | ||||
|             batch_seq_containers = meta_model(timestamps) | ||||
|             losses = [] | ||||
|             for seq_containers, seq_inputs, seq_targets in zip( | ||||
|                 batch_seq_containers, batch_seq_inputs, batch_seq_targets | ||||
|             ): | ||||
|                 for container, inputs, targets in zip( | ||||
|                     seq_containers, seq_inputs, seq_targets | ||||
|                 ): | ||||
|                     predictions = base_model.forward_with_container(inputs, container) | ||||
|                     loss = criterion(predictions, targets) | ||||
|                     losses.append(loss) | ||||
|             final_loss = torch.stack(losses).mean() | ||||
|             loss_meter.update(final_loss.item()) | ||||
|     return loss_meter | ||||
|  | ||||
|  | ||||
| def pretrain(base_model, meta_model, criterion, xenv, args, logger): | ||||
|     base_model.train() | ||||
|     meta_model.train() | ||||
|  | ||||
|     optimizer = torch.optim.Adam( | ||||
|         meta_model.parameters(), | ||||
|         lr=args.lr, | ||||
|         weight_decay=args.weight_decay, | ||||
|         amsgrad=True, | ||||
|     ) | ||||
|     logger.log("Pre-train the meta-model") | ||||
|     logger.log("Using the optimizer: {:}".format(optimizer)) | ||||
|  | ||||
|     meta_model.set_best_dir(logger.path(None) / "ckps-basic-pretrain") | ||||
|     rand_index = random.randint(0, meta_model.meta_length - xenv.seq_length - 1) | ||||
|     for iepoch in range(args.epochs): | ||||
|         left_time = "Time Left: {:}".format( | ||||
|             convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True) | ||||
|         ) | ||||
|         losses = [] | ||||
|         for ibatch in range(args.meta_batch): | ||||
|             timestamps = meta_model.meta_timestamps[ | ||||
|                 rand_index : rand_index + xenv.seq_length | ||||
|             ] | ||||
|             seq_timestamps, (seq_inputs, seq_targets) = xenv.seq_call(timestamps) | ||||
|             time_embeds = meta_model.super_meta_embed[ | ||||
|                 rand_index : rand_index + xenv.seq_length | ||||
|             ] | ||||
|             [seq_containers], time_embeds = meta_model( | ||||
|                 None, torch.unsqueeze(time_embeds, dim=0) | ||||
|             ) | ||||
|             seq_inputs, seq_targets = seq_inputs.to(args.device), seq_targets.to( | ||||
|                 args.device | ||||
|             ) | ||||
|             for container, inputs, targets in zip( | ||||
|                 seq_containers, seq_inputs, seq_targets | ||||
|             ): | ||||
|                 predictions = base_model.forward_with_container(inputs, container) | ||||
|                 loss = criterion(predictions, targets) | ||||
|                 losses.append(loss) | ||||
|         final_loss = torch.stack(losses).mean() | ||||
|         final_loss.backward() | ||||
|         optimizer.step() | ||||
|         # success | ||||
|         success, best_score = meta_model.save_best(-final_loss.item()) | ||||
|         logger.log( | ||||
|             "{:} [{:04d}/{:}] loss : {:.5f}".format( | ||||
|                 time_string(), | ||||
|                 iepoch, | ||||
|                 args.epochs, | ||||
|                 final_loss.item(), | ||||
|             ) | ||||
|             + ", batch={:}".format(len(losses)) | ||||
|             + ", success={:}, best_score={:.4f}".format(success, -best_score) | ||||
|             + " {:}".format(left_time) | ||||
|         ) | ||||
|         per_epoch_time.update(time.time() - start_time) | ||||
|         start_time = time.time() | ||||
|  | ||||
|  | ||||
| def main(args): | ||||
|     logger, env_info, model_kwargs = lfna_setup(args) | ||||
|     train_env = get_synthetic_env(mode="train", version=args.env_version) | ||||
|     valid_env = get_synthetic_env(mode="valid", version=args.env_version) | ||||
|     logger.log("training enviornment: {:}".format(train_env)) | ||||
|     logger.log("validation enviornment: {:}".format(valid_env)) | ||||
|  | ||||
|     base_model = get_model(**model_kwargs) | ||||
|     base_model = base_model.to(args.device) | ||||
|     criterion = torch.nn.MSELoss() | ||||
|  | ||||
|     shape_container = base_model.get_w_container().to_shape_container() | ||||
|  | ||||
|     # pre-train the hypernetwork | ||||
|     timestamps = train_env.get_timestamp(None) | ||||
|     meta_model = LFNA_Meta(shape_container, args.layer_dim, args.time_dim, timestamps) | ||||
|     meta_model = meta_model.to(args.device) | ||||
|  | ||||
|     logger.log("The base-model has {:} weights.".format(base_model.numel())) | ||||
|     logger.log("The meta-model has {:} weights.".format(meta_model.numel())) | ||||
|  | ||||
|     batch_sampler = EnvSampler(train_env, args.meta_batch, args.sampler_enlarge) | ||||
|     train_env.reset_max_seq_length(args.seq_length) | ||||
|     valid_env.reset_max_seq_length(args.seq_length) | ||||
|     valid_env_loader = torch.utils.data.DataLoader( | ||||
|         valid_env, | ||||
|         batch_size=args.meta_batch, | ||||
|         shuffle=True, | ||||
|         num_workers=args.workers, | ||||
|         pin_memory=True, | ||||
|     ) | ||||
|     train_env_loader = torch.utils.data.DataLoader( | ||||
|         train_env, | ||||
|         batch_sampler=batch_sampler, | ||||
|         num_workers=args.workers, | ||||
|         pin_memory=True, | ||||
|     ) | ||||
|  | ||||
|     optimizer = torch.optim.Adam( | ||||
|         meta_model.parameters(), | ||||
|         lr=args.lr, | ||||
|         weight_decay=args.weight_decay, | ||||
|         amsgrad=True, | ||||
|     ) | ||||
|     lr_scheduler = torch.optim.lr_scheduler.MultiStepLR( | ||||
|         optimizer, | ||||
|         milestones=[1, 2, 3, 4, 5], | ||||
|         gamma=0.2, | ||||
|     ) | ||||
|     logger.log("The base-model is\n{:}".format(base_model)) | ||||
|     logger.log("The meta-model is\n{:}".format(meta_model)) | ||||
|     logger.log("The optimizer is\n{:}".format(optimizer)) | ||||
|     logger.log("The scheduler is\n{:}".format(lr_scheduler)) | ||||
|     logger.log("Per epoch iterations = {:}".format(len(train_env_loader))) | ||||
|  | ||||
|     pretrain(base_model, meta_model, criterion, train_env, args, logger) | ||||
|  | ||||
|     if logger.path("model").exists(): | ||||
|         ckp_data = torch.load(logger.path("model")) | ||||
|         base_model.load_state_dict(ckp_data["base_model"]) | ||||
|         meta_model.load_state_dict(ckp_data["meta_model"]) | ||||
|         optimizer.load_state_dict(ckp_data["optimizer"]) | ||||
|         lr_scheduler.load_state_dict(ckp_data["lr_scheduler"]) | ||||
|         last_success_epoch = ckp_data["last_success_epoch"] | ||||
|         start_epoch = ckp_data["iepoch"] + 1 | ||||
|         check_strs = [ | ||||
|             "epochs", | ||||
|             "env_version", | ||||
|             "hidden_dim", | ||||
|             "lr", | ||||
|             "layer_dim", | ||||
|             "time_dim", | ||||
|             "seq_length", | ||||
|         ] | ||||
|         for xstr in check_strs: | ||||
|             cx = getattr(args, xstr) | ||||
|             px = getattr(ckp_data["args"], xstr) | ||||
|             assert cx == px, "[{:}] {:} vs {:}".format(xstr, cx, ps) | ||||
|         success, _ = meta_model.save_best(ckp_data["cur_score"]) | ||||
|         logger.log("Load ckp from {:}".format(logger.path("model"))) | ||||
|         if success: | ||||
|             logger.log( | ||||
|                 "Re-save the best model with score={:}".format(ckp_data["cur_score"]) | ||||
|             ) | ||||
|     else: | ||||
|         start_epoch, last_success_epoch = 0, 0 | ||||
|  | ||||
|     # LFNA meta-train | ||||
|     meta_model.set_best_dir(logger.path(None) / "checkpoint") | ||||
|     per_epoch_time, start_time = AverageMeter(), time.time() | ||||
|     for iepoch in range(start_epoch, args.epochs): | ||||
|  | ||||
|         head_str = "[{:}] [{:04d}/{:04d}] ".format( | ||||
|             time_string(), iepoch, args.epochs | ||||
|         ) + "Time Left: {:}".format( | ||||
|             convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True) | ||||
|         ) | ||||
|  | ||||
|         loss_meter = epoch_train( | ||||
|             train_env_loader, | ||||
|             meta_model, | ||||
|             base_model, | ||||
|             optimizer, | ||||
|             criterion, | ||||
|             args.device, | ||||
|             logger, | ||||
|         ) | ||||
|  | ||||
|         valid_loss_meter = epoch_evaluate( | ||||
|             valid_env_loader, meta_model, base_model, criterion, args.device, logger | ||||
|         ) | ||||
|         logger.log( | ||||
|             head_str | ||||
|             + " meta-train-loss: {meter.avg:.4f} ({meter.count:.0f})".format( | ||||
|                 meter=loss_meter | ||||
|             ) | ||||
|             + " meta-valid-loss: {meter.val:.4f}".format(meter=valid_loss_meter) | ||||
|             + " :: lr={:.5f}".format(min(lr_scheduler.get_last_lr())) | ||||
|             + "  :: last-success={:}".format(last_success_epoch) | ||||
|         ) | ||||
|         success, best_score = meta_model.save_best(-loss_meter.avg) | ||||
|         if success: | ||||
|             logger.log("Achieve the best with best-score = {:.5f}".format(best_score)) | ||||
|             last_success_epoch = iepoch | ||||
|             save_checkpoint( | ||||
|                 { | ||||
|                     "meta_model": meta_model.state_dict(), | ||||
|                     "base_model": base_model.state_dict(), | ||||
|                     "optimizer": optimizer.state_dict(), | ||||
|                     "lr_scheduler": lr_scheduler.state_dict(), | ||||
|                     "last_success_epoch": last_success_epoch, | ||||
|                     "cur_score": -loss_meter.avg, | ||||
|                     "iepoch": iepoch, | ||||
|                     "args": args, | ||||
|                 }, | ||||
|                 logger.path("model"), | ||||
|                 logger, | ||||
|             ) | ||||
|         if iepoch - last_success_epoch >= args.early_stop_thresh: | ||||
|             if lr_scheduler.last_epoch > 4: | ||||
|                 logger.log("Early stop at {:}".format(iepoch)) | ||||
|                 break | ||||
|             else: | ||||
|                 last_success_epoch = iepoch | ||||
|                 lr_scheduler.step() | ||||
|                 logger.log("Decay the lr [{:}]".format(lr_scheduler.last_epoch)) | ||||
|  | ||||
|         per_epoch_time.update(time.time() - start_time) | ||||
|         start_time = time.time() | ||||
|  | ||||
|     # meta-test | ||||
|     meta_model.load_best() | ||||
|     eval_env = env_info["dynamic_env"] | ||||
|     w_container_per_epoch = dict() | ||||
|     for idx in range(args.seq_length, len(eval_env)): | ||||
|         # build-timestamp | ||||
|         future_time = env_info["{:}-timestamp".format(idx)].item() | ||||
|         time_seqs = [] | ||||
|         for iseq in range(args.seq_length): | ||||
|             time_seqs.append(future_time - iseq * eval_env.timestamp_interval) | ||||
|         time_seqs.reverse() | ||||
|         with torch.no_grad(): | ||||
|             meta_model.eval() | ||||
|             base_model.eval() | ||||
|             time_seqs = torch.Tensor(time_seqs).view(1, -1).to(args.device) | ||||
|             [seq_containers] = meta_model(time_seqs) | ||||
|             future_container = seq_containers[-1] | ||||
|             w_container_per_epoch[idx] = future_container.no_grad_clone() | ||||
|             # evaluation | ||||
|             future_x = env_info["{:}-x".format(idx)].to(args.device) | ||||
|             future_y = env_info["{:}-y".format(idx)].to(args.device) | ||||
|             future_y_hat = base_model.forward_with_container( | ||||
|                 future_x, w_container_per_epoch[idx] | ||||
|             ) | ||||
|             future_loss = criterion(future_y_hat, future_y) | ||||
|             logger.log( | ||||
|                 "meta-test: [{:03d}] -> loss={:.4f}".format(idx, future_loss.item()) | ||||
|             ) | ||||
|  | ||||
|         # creating the new meta-time-embedding | ||||
|         distance = meta_model.get_closest_meta_distance(future_time) | ||||
|         if distance < eval_env.timestamp_interval: | ||||
|             continue | ||||
|         # | ||||
|         new_param = meta_model.create_meta_embed() | ||||
|         optimizer = torch.optim.Adam( | ||||
|             [new_param], lr=args.refine_lr, weight_decay=1e-5, amsgrad=True | ||||
|         ) | ||||
|         meta_model.replace_append_learnt( | ||||
|             torch.Tensor([future_time]).to(args.device), new_param | ||||
|         ) | ||||
|         meta_model.eval() | ||||
|         base_model.train() | ||||
|         for iepoch in range(args.refine_epochs): | ||||
|             optimizer.zero_grad() | ||||
|             [seq_containers] = meta_model(time_seqs) | ||||
|             future_container = seq_containers[-1] | ||||
|             future_y_hat = base_model.forward_with_container(future_x, future_container) | ||||
|             future_loss = criterion(future_y_hat, future_y) | ||||
|             future_loss.backward() | ||||
|             optimizer.step() | ||||
|         logger.log( | ||||
|             "post-meta-test: [{:03d}] -> loss={:.4f}".format(idx, future_loss.item()) | ||||
|         ) | ||||
|         with torch.no_grad(): | ||||
|             meta_model.replace_append_learnt(None, None) | ||||
|             meta_model.append_fixed(torch.Tensor([future_time]), new_param) | ||||
|  | ||||
|     save_checkpoint( | ||||
|         {"w_container_per_epoch": w_container_per_epoch}, | ||||
|         logger.path(None) / "final-ckp.pth", | ||||
|         logger, | ||||
|     ) | ||||
|  | ||||
|     logger.log("-" * 200 + "\n") | ||||
|     logger.close() | ||||
|  | ||||
|  | ||||
| if __name__ == "__main__": | ||||
|     parser = argparse.ArgumentParser(".") | ||||
|     parser.add_argument( | ||||
|         "--save_dir", | ||||
|         type=str, | ||||
|         default="./outputs/lfna-synthetic/lfna-battle", | ||||
|         help="The checkpoint directory.", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--env_version", | ||||
|         type=str, | ||||
|         required=True, | ||||
|         help="The synthetic enviornment version.", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--hidden_dim", | ||||
|         type=int, | ||||
|         default=16, | ||||
|         help="The hidden dimension.", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--layer_dim", | ||||
|         type=int, | ||||
|         default=16, | ||||
|         help="The layer chunk dimension.", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--time_dim", | ||||
|         type=int, | ||||
|         default=16, | ||||
|         help="The timestamp dimension.", | ||||
|     ) | ||||
|     ##### | ||||
|     parser.add_argument( | ||||
|         "--lr", | ||||
|         type=float, | ||||
|         default=0.002, | ||||
|         help="The initial learning rate for the optimizer (default is Adam)", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--weight_decay", | ||||
|         type=float, | ||||
|         default=0.00001, | ||||
|         help="The weight decay for the optimizer (default is Adam)", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--meta_batch", | ||||
|         type=int, | ||||
|         default=64, | ||||
|         help="The batch size for the meta-model", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--sampler_enlarge", | ||||
|         type=int, | ||||
|         default=5, | ||||
|         help="Enlarge the #iterations for an epoch", | ||||
|     ) | ||||
|     parser.add_argument("--epochs", type=int, default=10000, help="The total #epochs.") | ||||
|     parser.add_argument( | ||||
|         "--refine_lr", | ||||
|         type=float, | ||||
|         default=0.005, | ||||
|         help="The learning rate for the optimizer, during refine", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--refine_epochs", type=int, default=1000, help="The final refine #epochs." | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--early_stop_thresh", | ||||
|         type=int, | ||||
|         default=20, | ||||
|         help="The #epochs for early stop.", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--seq_length", type=int, default=10, help="The sequence length." | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--workers", type=int, default=4, help="The number of workers in parallel." | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--device", | ||||
|         type=str, | ||||
|         default="cpu", | ||||
|         help="", | ||||
|     ) | ||||
|     # Random Seed | ||||
|     parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed") | ||||
|     args = parser.parse_args() | ||||
|     if args.rand_seed is None or args.rand_seed < 0: | ||||
|         args.rand_seed = random.randint(1, 100000) | ||||
|     assert args.save_dir is not None, "The save dir argument can not be None" | ||||
|     args.save_dir = "{:}-d{:}_{:}_{:}-s{:}-lr{:}-wd{:}-e{:}-env{:}".format( | ||||
|         args.save_dir, | ||||
|         args.hidden_dim, | ||||
|         args.layer_dim, | ||||
|         args.time_dim, | ||||
|         args.seq_length, | ||||
|         args.lr, | ||||
|         args.weight_decay, | ||||
|         args.epochs, | ||||
|         args.env_version, | ||||
|     ) | ||||
|     main(args) | ||||
| @@ -1,8 +1,8 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # | ||||
| ##################################################### | ||||
| # python exps/LFNA/basic-same.py --env_version v1 --hidden_dim 16 --epochs 500 --init_lr 0.1 | ||||
| # python exps/LFNA/basic-same.py --env_version v2 --hidden_dim 16 --epochs 1000 --init_lr 0.05 | ||||
| # python exps/GeMOSA/basic-same.py --env_version v1 --hidden_dim 16 --epochs 500 --init_lr 0.1 | ||||
| # python exps/GeMOSA/basic-same.py --env_version v2 --hidden_dim 16 --epochs 1000 --init_lr 0.05 | ||||
| ##################################################### | ||||
| import sys, time, copy, torch, random, argparse | ||||
| from tqdm import tqdm | ||||
| @@ -181,21 +181,20 @@ class MetaModelV1(super_core.SuperModule): | ||||
|             timestamp_v_embed, | ||||
|             mask, | ||||
|         ) | ||||
|         return timestamp_embeds | ||||
|         return timestamp_embeds[:, -1, :] | ||||
| 
 | ||||
|     def forward_raw(self, timestamps, time_embeds, tembed_only=False): | ||||
|         if time_embeds is None: | ||||
|             time_seq = timestamps.view(-1, 1) + self._time_interval.view(1, -1) | ||||
|             B, S = time_seq.shape | ||||
|             time_embeds = self._obtain_time_embed(time_seq) | ||||
|         else: | ||||
|         else:  # use the hyper-net only | ||||
|             time_seq = None | ||||
|             B, S, _ = time_embeds.shape | ||||
|         # create joint embed | ||||
|         num_layer, _ = self._super_layer_embed.shape | ||||
|         time_embeds = time_embeds[:, -1, :] | ||||
|             B, _ = time_embeds.shape | ||||
|         if tembed_only: | ||||
|             return time_embeds | ||||
|         # create joint embed | ||||
|         num_layer, _ = self._super_layer_embed.shape | ||||
|         # The shape of `joint_embed` is batch * num-layers * input-dim | ||||
|         joint_embeds = torch.cat( | ||||
|             ( | ||||
| @@ -1,10 +1,10 @@ | ||||
| ##################################################### | ||||
| # Learning to Generate Model One Step Ahead         # | ||||
| ##################################################### | ||||
| # python exps/GMOA/lfna.py --env_version v1 --workers 0 | ||||
| # python exps/GMOA/lfna.py --env_version v1 --device cuda --lr 0.001 | ||||
| # python exps/GMOA/lfna.py --env_version v1 --device cuda --lr 0.002 --seq_length 16 --meta_batch 128 | ||||
| # python exps/GMOA/lfna.py --env_version v1 --device cuda --lr 0.002 --seq_length 24 --time_dim 32 --meta_batch 128 | ||||
| # python exps/GeMOSA/lfna.py --env_version v1 --workers 0 | ||||
| # python exps/GeMOSA/lfna.py --env_version v1 --device cuda --lr 0.001 | ||||
| # python exps/GeMOSA/main.py --env_version v1 --device cuda --lr 0.002 --seq_length 16 --meta_batch 128 | ||||
| # python exps/GeMOSA/lfna.py --env_version v1 --device cuda --lr 0.002 --seq_length 24 --time_dim 32 --meta_batch 128 | ||||
| ##################################################### | ||||
| import sys, time, copy, torch, random, argparse | ||||
| from tqdm import tqdm | ||||
| @@ -38,63 +38,6 @@ from lfna_utils import lfna_setup, train_model, TimeData | ||||
| from lfna_meta_model import MetaModelV1 | ||||
| 
 | ||||
| 
 | ||||
| def epoch_train(loader, meta_model, base_model, optimizer, criterion, device, logger): | ||||
|     base_model.train() | ||||
|     meta_model.train() | ||||
|     loss_meter = AverageMeter() | ||||
|     for ibatch, batch_data in enumerate(loader): | ||||
|         timestamps, (batch_seq_inputs, batch_seq_targets) = batch_data | ||||
|         timestamps = timestamps.squeeze(dim=-1).to(device) | ||||
|         batch_seq_inputs = batch_seq_inputs.to(device) | ||||
|         batch_seq_targets = batch_seq_targets.to(device) | ||||
| 
 | ||||
|         optimizer.zero_grad() | ||||
| 
 | ||||
|         batch_seq_containers = meta_model(timestamps) | ||||
|         losses = [] | ||||
|         for seq_containers, seq_inputs, seq_targets in zip( | ||||
|             batch_seq_containers, batch_seq_inputs, batch_seq_targets | ||||
|         ): | ||||
|             for container, inputs, targets in zip( | ||||
|                 seq_containers, seq_inputs, seq_targets | ||||
|             ): | ||||
|                 predictions = base_model.forward_with_container(inputs, container) | ||||
|                 loss = criterion(predictions, targets) | ||||
|                 losses.append(loss) | ||||
|         final_loss = torch.stack(losses).mean() | ||||
|         final_loss.backward() | ||||
|         optimizer.step() | ||||
|         loss_meter.update(final_loss.item()) | ||||
|     return loss_meter | ||||
| 
 | ||||
| 
 | ||||
| def epoch_evaluate(loader, meta_model, base_model, criterion, device, logger): | ||||
|     with torch.no_grad(): | ||||
|         base_model.eval() | ||||
|         meta_model.eval() | ||||
|         loss_meter = AverageMeter() | ||||
|         for ibatch, batch_data in enumerate(loader): | ||||
|             timestamps, (batch_seq_inputs, batch_seq_targets) = batch_data | ||||
|             timestamps = timestamps.squeeze(dim=-1).to(device) | ||||
|             batch_seq_inputs = batch_seq_inputs.to(device) | ||||
|             batch_seq_targets = batch_seq_targets.to(device) | ||||
| 
 | ||||
|             batch_seq_containers = meta_model(timestamps) | ||||
|             losses = [] | ||||
|             for seq_containers, seq_inputs, seq_targets in zip( | ||||
|                 batch_seq_containers, batch_seq_inputs, batch_seq_targets | ||||
|             ): | ||||
|                 for container, inputs, targets in zip( | ||||
|                     seq_containers, seq_inputs, seq_targets | ||||
|                 ): | ||||
|                     predictions = base_model.forward_with_container(inputs, container) | ||||
|                     loss = criterion(predictions, targets) | ||||
|                     losses.append(loss) | ||||
|             final_loss = torch.stack(losses).mean() | ||||
|             loss_meter.update(final_loss.item()) | ||||
|     return loss_meter | ||||
| 
 | ||||
| 
 | ||||
| def online_evaluate(env, meta_model, base_model, criterion, args, logger, save=False): | ||||
|     logger.log("Online evaluate: {:}".format(env)) | ||||
|     loss_meter = AverageMeter() | ||||
| @@ -133,7 +76,7 @@ def online_evaluate(env, meta_model, base_model, criterion, args, logger, save=F | ||||
|     return w_containers, loss_meter | ||||
| 
 | ||||
| 
 | ||||
| def pretrain_v2(base_model, meta_model, criterion, xenv, args, logger): | ||||
| def meta_train_procedure(base_model, meta_model, criterion, xenv, args, logger): | ||||
|     base_model.train() | ||||
|     meta_model.train() | ||||
|     optimizer = torch.optim.Adam( | ||||
| @@ -152,6 +95,7 @@ def pretrain_v2(base_model, meta_model, criterion, xenv, args, logger): | ||||
|         logger.log("Directly load the best model from {:}".format(final_best_name)) | ||||
|         return | ||||
| 
 | ||||
|     total_indexes = list(range(meta_model.meta_length)) | ||||
|     meta_model.set_best_name("pretrain-{:}.pth".format(args.rand_seed)) | ||||
|     last_success_epoch, early_stop_thresh = 0, args.pretrain_early_stop_thresh | ||||
|     per_epoch_time, start_time = AverageMeter(), time.time() | ||||
| @@ -160,47 +104,50 @@ def pretrain_v2(base_model, meta_model, criterion, xenv, args, logger): | ||||
|         left_time = "Time Left: {:}".format( | ||||
|             convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True) | ||||
|         ) | ||||
|         total_future_losses, total_present_losses, total_regu_losses = [], [], [] | ||||
|         optimizer.zero_grad() | ||||
|         for ibatch in range(args.meta_batch): | ||||
|             rand_index = random.randint(0, meta_model.meta_length - 1) | ||||
|             timestamp = meta_model.meta_timestamps[rand_index] | ||||
| 
 | ||||
|             _, [container], time_embed = meta_model( | ||||
|                 torch.unsqueeze(timestamp, dim=0), None, False | ||||
|             ) | ||||
|             _, (inputs, targets) = xenv(timestamp.item()) | ||||
|         generated_time_embeds = meta_model(meta_model.meta_timestamps, None, True) | ||||
| 
 | ||||
|         batch_indexes = random.choices(total_indexes, k=args.meta_batch) | ||||
| 
 | ||||
|         raw_time_steps = meta_model.meta_timestamps[batch_indexes] | ||||
| 
 | ||||
|         regularization_loss = F.l1_loss( | ||||
|             generated_time_embeds, meta_model.super_meta_embed, reduction="mean" | ||||
|         ) | ||||
|         # future loss | ||||
|         total_future_losses, total_present_losses = [], [] | ||||
|         _, future_containers, _ = meta_model( | ||||
|             None, generated_time_embeds[batch_indexes], False | ||||
|         ) | ||||
|         _, present_containers, _ = meta_model( | ||||
|             None, meta_model.super_meta_embed[batch_indexes], False | ||||
|         ) | ||||
|         for ibatch, time_step in enumerate(raw_time_steps.cpu().tolist()): | ||||
|             _, (inputs, targets) = xenv(time_step) | ||||
|             inputs, targets = inputs.to(device), targets.to(device) | ||||
|             # generate models one step ahead | ||||
|             predictions = base_model.forward_with_container(inputs, container) | ||||
|             total_future_losses.append(criterion(predictions, targets)) | ||||
|             # randomly sample | ||||
|             rand_index = random.randint(0, meta_model.meta_length - 1) | ||||
|             timestamp = meta_model.meta_timestamps[rand_index] | ||||
|             meta_embed = meta_model.super_meta_embed[rand_index] | ||||
| 
 | ||||
|             time_embed = meta_model(torch.unsqueeze(timestamp, dim=0), None, True) | ||||
|             total_regu_losses.append( | ||||
|                 F.mse_loss( | ||||
|                     torch.squeeze(time_embed, dim=0), meta_embed, reduction="mean" | ||||
|                 ) | ||||
|             predictions = base_model.forward_with_container( | ||||
|                 inputs, future_containers[ibatch] | ||||
|             ) | ||||
|             total_future_losses.append(criterion(predictions, targets)) | ||||
| 
 | ||||
|             predictions = base_model.forward_with_container( | ||||
|                 inputs, present_containers[ibatch] | ||||
|             ) | ||||
|             # generate models via memory | ||||
|             _, [container], _ = meta_model(None, meta_embed.view(1, 1, -1), False) | ||||
|             predictions = base_model.forward_with_container(inputs, container) | ||||
|             total_present_losses.append(criterion(predictions, targets)) | ||||
| 
 | ||||
|         with torch.no_grad(): | ||||
|             meta_std = torch.stack(total_future_losses).std().item() | ||||
|         loss_future = torch.stack(total_future_losses).mean() | ||||
|         loss_present = torch.stack(total_present_losses).mean() | ||||
|         regularization_loss = torch.stack(total_regu_losses).mean() | ||||
|         total_loss = loss_future + loss_present + regularization_loss | ||||
|         total_loss.backward() | ||||
|         optimizer.step() | ||||
|         # success | ||||
|         success, best_score = meta_model.save_best(-total_loss.item()) | ||||
|         logger.log( | ||||
|             "{:} [Pre-V2 {:04d}/{:}] loss : {:.4f} +- {:.4f} = {:.4f} + {:.4f} + {:.4f}".format( | ||||
|             "{:} [META {:04d}/{:}] loss : {:.4f} +- {:.4f} = {:.4f} + {:.4f} + {:.4f}".format( | ||||
|                 time_string(), | ||||
|                 iepoch, | ||||
|                 args.epochs, | ||||
| @@ -264,7 +211,7 @@ def main(args): | ||||
|     logger.log("The base-model is\n{:}".format(base_model)) | ||||
|     logger.log("The meta-model is\n{:}".format(meta_model)) | ||||
| 
 | ||||
|     pretrain_v2(base_model, meta_model, criterion, trainval_env, args, logger) | ||||
|     meta_train_procedure(base_model, meta_model, criterion, trainval_env, args, logger) | ||||
| 
 | ||||
|     # try to evaluate once | ||||
|     # online_evaluate(train_env, meta_model, base_model, criterion, args, logger) | ||||
		Reference in New Issue
	
	Block a user