Update codes
This commit is contained in:
parent
f8350d00ed
commit
9057011781
@ -1,228 +0,0 @@
|
|||||||
#####################################################
|
|
||||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
|
|
||||||
#####################################################
|
|
||||||
# python exps/LFNA/lfna-debug-hpnet.py --env_version v1 --hidden_dim 16 --meta_batch 64 --device cuda
|
|
||||||
#####################################################
|
|
||||||
import sys, time, copy, torch, random, argparse
|
|
||||||
from tqdm import tqdm
|
|
||||||
from copy import deepcopy
|
|
||||||
from pathlib import Path
|
|
||||||
|
|
||||||
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
|
|
||||||
if str(lib_dir) not in sys.path:
|
|
||||||
sys.path.insert(0, str(lib_dir))
|
|
||||||
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint
|
|
||||||
from log_utils import time_string
|
|
||||||
from log_utils import AverageMeter, convert_secs2time
|
|
||||||
|
|
||||||
from utils import split_str2indexes
|
|
||||||
|
|
||||||
from procedures.advanced_main import basic_train_fn, basic_eval_fn
|
|
||||||
from procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric
|
|
||||||
from datasets.synthetic_core import get_synthetic_env
|
|
||||||
from models.xcore import get_model
|
|
||||||
from xlayers import super_core, trunc_normal_
|
|
||||||
|
|
||||||
|
|
||||||
from lfna_utils import lfna_setup, train_model, TimeData
|
|
||||||
|
|
||||||
from lfna_models import HyperNet
|
|
||||||
|
|
||||||
|
|
||||||
def main(args):
|
|
||||||
logger, env_info, model_kwargs = lfna_setup(args)
|
|
||||||
dynamic_env = env_info["dynamic_env"]
|
|
||||||
model = get_model(**model_kwargs)
|
|
||||||
criterion = torch.nn.MSELoss()
|
|
||||||
|
|
||||||
shape_container = model.get_w_container().to_shape_container()
|
|
||||||
hypernet = HyperNet(
|
|
||||||
shape_container, args.hidden_dim, args.task_dim, len(dynamic_env)
|
|
||||||
)
|
|
||||||
hypernet = hypernet.to(args.device)
|
|
||||||
|
|
||||||
logger.log(
|
|
||||||
"{:} There are {:} weights in the base-model.".format(
|
|
||||||
time_string(), model.numel()
|
|
||||||
)
|
|
||||||
)
|
|
||||||
logger.log(
|
|
||||||
"{:} There are {:} weights in the meta-model.".format(
|
|
||||||
time_string(), hypernet.numel()
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
for i in range(len(dynamic_env)):
|
|
||||||
env_info["{:}-x".format(i)] = env_info["{:}-x".format(i)].to(args.device)
|
|
||||||
env_info["{:}-y".format(i)] = env_info["{:}-y".format(i)].to(args.device)
|
|
||||||
logger.log("{:} Convert to device-{:} done".format(time_string(), args.device))
|
|
||||||
|
|
||||||
optimizer = torch.optim.Adam(
|
|
||||||
hypernet.parameters(), lr=args.init_lr, weight_decay=1e-5, amsgrad=True
|
|
||||||
)
|
|
||||||
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
|
|
||||||
optimizer,
|
|
||||||
milestones=[
|
|
||||||
int(args.epochs * 0.8),
|
|
||||||
int(args.epochs * 0.9),
|
|
||||||
],
|
|
||||||
gamma=0.1,
|
|
||||||
)
|
|
||||||
|
|
||||||
# LFNA meta-training
|
|
||||||
per_epoch_time, start_time = AverageMeter(), time.time()
|
|
||||||
last_success_epoch = 0
|
|
||||||
for iepoch in range(args.epochs):
|
|
||||||
|
|
||||||
need_time = "Time Left: {:}".format(
|
|
||||||
convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True)
|
|
||||||
)
|
|
||||||
head_str = (
|
|
||||||
"[{:}] [{:04d}/{:04d}] ".format(time_string(), iepoch, args.epochs)
|
|
||||||
+ need_time
|
|
||||||
)
|
|
||||||
# One Epoch
|
|
||||||
loss_meter = AverageMeter()
|
|
||||||
for istep in range(args.per_epoch_step):
|
|
||||||
losses = []
|
|
||||||
for ibatch in range(args.meta_batch):
|
|
||||||
cur_time = random.randint(0, len(dynamic_env) - 1)
|
|
||||||
cur_container = hypernet(cur_time)
|
|
||||||
cur_x = env_info["{:}-x".format(cur_time)]
|
|
||||||
cur_y = env_info["{:}-y".format(cur_time)]
|
|
||||||
cur_dataset = TimeData(cur_time, cur_x, cur_y)
|
|
||||||
|
|
||||||
preds = model.forward_with_container(cur_dataset.x, cur_container)
|
|
||||||
optimizer.zero_grad()
|
|
||||||
loss = criterion(preds, cur_dataset.y)
|
|
||||||
|
|
||||||
losses.append(loss)
|
|
||||||
final_loss = torch.stack(losses).mean()
|
|
||||||
final_loss.backward()
|
|
||||||
optimizer.step()
|
|
||||||
lr_scheduler.step()
|
|
||||||
loss_meter.update(final_loss.item())
|
|
||||||
success, best_score = hypernet.save_best(-loss_meter.avg)
|
|
||||||
if success:
|
|
||||||
logger.log("Achieve the best with best_score = {:.3f}".format(best_score))
|
|
||||||
last_success_epoch = iepoch
|
|
||||||
if iepoch - last_success_epoch >= args.early_stop_thresh:
|
|
||||||
logger.log("Early stop at {:}".format(iepoch))
|
|
||||||
break
|
|
||||||
logger.log(
|
|
||||||
head_str
|
|
||||||
+ " meta-loss: {:.4f} ({:.4f}) :: lr={:.5f}, batch={:}".format(
|
|
||||||
loss_meter.avg,
|
|
||||||
loss_meter.val,
|
|
||||||
min(lr_scheduler.get_last_lr()),
|
|
||||||
len(losses),
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
save_checkpoint(
|
|
||||||
{
|
|
||||||
"hypernet": hypernet.state_dict(),
|
|
||||||
"lr_scheduler": lr_scheduler.state_dict(),
|
|
||||||
"iepoch": iepoch,
|
|
||||||
},
|
|
||||||
logger.path("model"),
|
|
||||||
logger,
|
|
||||||
)
|
|
||||||
per_epoch_time.update(time.time() - start_time)
|
|
||||||
start_time = time.time()
|
|
||||||
|
|
||||||
print(model)
|
|
||||||
print(hypernet)
|
|
||||||
hypernet.load_best()
|
|
||||||
|
|
||||||
w_container_per_epoch = dict()
|
|
||||||
for idx in range(0, env_info["total"]):
|
|
||||||
future_x = env_info["{:}-x".format(idx)]
|
|
||||||
future_y = env_info["{:}-y".format(idx)]
|
|
||||||
future_container = hypernet(idx)
|
|
||||||
w_container_per_epoch[idx] = future_container.no_grad_clone()
|
|
||||||
with torch.no_grad():
|
|
||||||
future_y_hat = model.forward_with_container(
|
|
||||||
future_x, w_container_per_epoch[idx]
|
|
||||||
)
|
|
||||||
future_loss = criterion(future_y_hat, future_y)
|
|
||||||
logger.log("meta-test: [{:03d}] -> loss={:.4f}".format(idx, future_loss.item()))
|
|
||||||
|
|
||||||
save_checkpoint(
|
|
||||||
{"w_container_per_epoch": w_container_per_epoch},
|
|
||||||
logger.path(None) / "final-ckp.pth",
|
|
||||||
logger,
|
|
||||||
)
|
|
||||||
|
|
||||||
logger.log("-" * 200 + "\n")
|
|
||||||
logger.close()
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
parser = argparse.ArgumentParser("Use the data in the past.")
|
|
||||||
parser.add_argument(
|
|
||||||
"--save_dir",
|
|
||||||
type=str,
|
|
||||||
default="./outputs/lfna-synthetic/lfna-debug-hpnet",
|
|
||||||
help="The checkpoint directory.",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--env_version",
|
|
||||||
type=str,
|
|
||||||
required=True,
|
|
||||||
help="The synthetic enviornment version.",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--hidden_dim",
|
|
||||||
type=int,
|
|
||||||
required=True,
|
|
||||||
help="The hidden dimension.",
|
|
||||||
)
|
|
||||||
#####
|
|
||||||
parser.add_argument(
|
|
||||||
"--init_lr",
|
|
||||||
type=float,
|
|
||||||
default=0.01,
|
|
||||||
help="The initial learning rate for the optimizer (default is Adam)",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--meta_batch",
|
|
||||||
type=int,
|
|
||||||
default=64,
|
|
||||||
help="The batch size for the meta-model",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--early_stop_thresh",
|
|
||||||
type=int,
|
|
||||||
default=100,
|
|
||||||
help="The maximum epochs for early stop.",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--epochs",
|
|
||||||
type=int,
|
|
||||||
default=2000,
|
|
||||||
help="The total number of epochs.",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--per_epoch_step",
|
|
||||||
type=int,
|
|
||||||
default=20,
|
|
||||||
help="The total number of epochs.",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--device",
|
|
||||||
type=str,
|
|
||||||
default="cpu",
|
|
||||||
help="",
|
|
||||||
)
|
|
||||||
# Random Seed
|
|
||||||
parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")
|
|
||||||
args = parser.parse_args()
|
|
||||||
if args.rand_seed is None or args.rand_seed < 0:
|
|
||||||
args.rand_seed = random.randint(1, 100000)
|
|
||||||
assert args.save_dir is not None, "The save dir argument can not be None"
|
|
||||||
args.task_dim = args.hidden_dim
|
|
||||||
args.save_dir = "{:}-{:}-d{:}".format(
|
|
||||||
args.save_dir, args.env_version, args.hidden_dim
|
|
||||||
)
|
|
||||||
main(args)
|
|
@ -1,476 +0,0 @@
|
|||||||
#####################################################
|
|
||||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
|
|
||||||
#####################################################
|
|
||||||
# python exps/LFNA/lfna-debug.py --env_version v1 --workers 0
|
|
||||||
# python exps/LFNA/lfna.py --env_version v1 --device cuda --lr 0.001
|
|
||||||
# python exps/LFNA/lfna.py --env_version v1 --device cuda --lr 0.002
|
|
||||||
#####################################################
|
|
||||||
import sys, time, copy, torch, random, argparse
|
|
||||||
from tqdm import tqdm
|
|
||||||
from copy import deepcopy
|
|
||||||
from pathlib import Path
|
|
||||||
|
|
||||||
lib_dir = (Path(__file__).parent / ".." / "..").resolve()
|
|
||||||
print("LIB-DIR: {:}".format(lib_dir))
|
|
||||||
if str(lib_dir) not in sys.path:
|
|
||||||
sys.path.insert(0, str(lib_dir))
|
|
||||||
|
|
||||||
from xautodl.procedures import (
|
|
||||||
prepare_seed,
|
|
||||||
prepare_logger,
|
|
||||||
save_checkpoint,
|
|
||||||
copy_checkpoint,
|
|
||||||
)
|
|
||||||
from xautodl.log_utils import time_string
|
|
||||||
from xautodl.log_utils import AverageMeter, convert_secs2time
|
|
||||||
|
|
||||||
from xautodl.utils import split_str2indexes
|
|
||||||
|
|
||||||
from xautodl.procedures.advanced_main import basic_train_fn, basic_eval_fn
|
|
||||||
from xautodl.procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric
|
|
||||||
from xautodl.datasets.synthetic_core import get_synthetic_env, EnvSampler
|
|
||||||
from xautodl.models.xcore import get_model
|
|
||||||
from xautodl.xlayers import super_core, trunc_normal_
|
|
||||||
|
|
||||||
from lfna_utils import lfna_setup, train_model, TimeData
|
|
||||||
from lfna_meta_model import LFNA_Meta
|
|
||||||
|
|
||||||
|
|
||||||
def epoch_train(loader, meta_model, base_model, optimizer, criterion, device, logger):
|
|
||||||
base_model.train()
|
|
||||||
meta_model.train()
|
|
||||||
loss_meter = AverageMeter()
|
|
||||||
for ibatch, batch_data in enumerate(loader):
|
|
||||||
timestamps, (batch_seq_inputs, batch_seq_targets) = batch_data
|
|
||||||
timestamps = timestamps.squeeze(dim=-1).to(device)
|
|
||||||
batch_seq_inputs = batch_seq_inputs.to(device)
|
|
||||||
batch_seq_targets = batch_seq_targets.to(device)
|
|
||||||
|
|
||||||
optimizer.zero_grad()
|
|
||||||
|
|
||||||
batch_seq_containers = meta_model(timestamps)
|
|
||||||
losses = []
|
|
||||||
for seq_containers, seq_inputs, seq_targets in zip(
|
|
||||||
batch_seq_containers, batch_seq_inputs, batch_seq_targets
|
|
||||||
):
|
|
||||||
for container, inputs, targets in zip(
|
|
||||||
seq_containers, seq_inputs, seq_targets
|
|
||||||
):
|
|
||||||
predictions = base_model.forward_with_container(inputs, container)
|
|
||||||
loss = criterion(predictions, targets)
|
|
||||||
losses.append(loss)
|
|
||||||
final_loss = torch.stack(losses).mean()
|
|
||||||
final_loss.backward()
|
|
||||||
optimizer.step()
|
|
||||||
loss_meter.update(final_loss.item())
|
|
||||||
return loss_meter
|
|
||||||
|
|
||||||
|
|
||||||
def epoch_evaluate(loader, meta_model, base_model, criterion, device, logger):
|
|
||||||
with torch.no_grad():
|
|
||||||
base_model.eval()
|
|
||||||
meta_model.eval()
|
|
||||||
loss_meter = AverageMeter()
|
|
||||||
for ibatch, batch_data in enumerate(loader):
|
|
||||||
timestamps, (batch_seq_inputs, batch_seq_targets) = batch_data
|
|
||||||
timestamps = timestamps.squeeze(dim=-1).to(device)
|
|
||||||
batch_seq_inputs = batch_seq_inputs.to(device)
|
|
||||||
batch_seq_targets = batch_seq_targets.to(device)
|
|
||||||
|
|
||||||
batch_seq_containers = meta_model(timestamps)
|
|
||||||
losses = []
|
|
||||||
for seq_containers, seq_inputs, seq_targets in zip(
|
|
||||||
batch_seq_containers, batch_seq_inputs, batch_seq_targets
|
|
||||||
):
|
|
||||||
for container, inputs, targets in zip(
|
|
||||||
seq_containers, seq_inputs, seq_targets
|
|
||||||
):
|
|
||||||
predictions = base_model.forward_with_container(inputs, container)
|
|
||||||
loss = criterion(predictions, targets)
|
|
||||||
losses.append(loss)
|
|
||||||
final_loss = torch.stack(losses).mean()
|
|
||||||
loss_meter.update(final_loss.item())
|
|
||||||
return loss_meter
|
|
||||||
|
|
||||||
|
|
||||||
def pretrain(base_model, meta_model, criterion, xenv, args, logger):
|
|
||||||
base_model.train()
|
|
||||||
meta_model.train()
|
|
||||||
|
|
||||||
optimizer = torch.optim.Adam(
|
|
||||||
meta_model.parameters(),
|
|
||||||
lr=args.lr,
|
|
||||||
weight_decay=args.weight_decay,
|
|
||||||
amsgrad=True,
|
|
||||||
)
|
|
||||||
logger.log("Pre-train the meta-model")
|
|
||||||
logger.log("Using the optimizer: {:}".format(optimizer))
|
|
||||||
|
|
||||||
meta_model.set_best_dir(logger.path(None) / "ckps-basic-pretrain")
|
|
||||||
rand_index = random.randint(0, meta_model.meta_length - xenv.seq_length - 1)
|
|
||||||
for iepoch in range(args.epochs):
|
|
||||||
left_time = "Time Left: {:}".format(
|
|
||||||
convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True)
|
|
||||||
)
|
|
||||||
losses = []
|
|
||||||
for ibatch in range(args.meta_batch):
|
|
||||||
timestamps = meta_model.meta_timestamps[
|
|
||||||
rand_index : rand_index + xenv.seq_length
|
|
||||||
]
|
|
||||||
seq_timestamps, (seq_inputs, seq_targets) = xenv.seq_call(timestamps)
|
|
||||||
time_embeds = meta_model.super_meta_embed[
|
|
||||||
rand_index : rand_index + xenv.seq_length
|
|
||||||
]
|
|
||||||
[seq_containers], time_embeds = meta_model(
|
|
||||||
None, torch.unsqueeze(time_embeds, dim=0)
|
|
||||||
)
|
|
||||||
seq_inputs, seq_targets = seq_inputs.to(args.device), seq_targets.to(
|
|
||||||
args.device
|
|
||||||
)
|
|
||||||
for container, inputs, targets in zip(
|
|
||||||
seq_containers, seq_inputs, seq_targets
|
|
||||||
):
|
|
||||||
predictions = base_model.forward_with_container(inputs, container)
|
|
||||||
loss = criterion(predictions, targets)
|
|
||||||
losses.append(loss)
|
|
||||||
final_loss = torch.stack(losses).mean()
|
|
||||||
final_loss.backward()
|
|
||||||
optimizer.step()
|
|
||||||
# success
|
|
||||||
success, best_score = meta_model.save_best(-final_loss.item())
|
|
||||||
logger.log(
|
|
||||||
"{:} [{:04d}/{:}] loss : {:.5f}".format(
|
|
||||||
time_string(),
|
|
||||||
iepoch,
|
|
||||||
args.epochs,
|
|
||||||
final_loss.item(),
|
|
||||||
)
|
|
||||||
+ ", batch={:}".format(len(losses))
|
|
||||||
+ ", success={:}, best_score={:.4f}".format(success, -best_score)
|
|
||||||
+ " {:}".format(left_time)
|
|
||||||
)
|
|
||||||
per_epoch_time.update(time.time() - start_time)
|
|
||||||
start_time = time.time()
|
|
||||||
|
|
||||||
|
|
||||||
def main(args):
|
|
||||||
logger, env_info, model_kwargs = lfna_setup(args)
|
|
||||||
train_env = get_synthetic_env(mode="train", version=args.env_version)
|
|
||||||
valid_env = get_synthetic_env(mode="valid", version=args.env_version)
|
|
||||||
logger.log("training enviornment: {:}".format(train_env))
|
|
||||||
logger.log("validation enviornment: {:}".format(valid_env))
|
|
||||||
|
|
||||||
base_model = get_model(**model_kwargs)
|
|
||||||
base_model = base_model.to(args.device)
|
|
||||||
criterion = torch.nn.MSELoss()
|
|
||||||
|
|
||||||
shape_container = base_model.get_w_container().to_shape_container()
|
|
||||||
|
|
||||||
# pre-train the hypernetwork
|
|
||||||
timestamps = train_env.get_timestamp(None)
|
|
||||||
meta_model = LFNA_Meta(shape_container, args.layer_dim, args.time_dim, timestamps)
|
|
||||||
meta_model = meta_model.to(args.device)
|
|
||||||
|
|
||||||
logger.log("The base-model has {:} weights.".format(base_model.numel()))
|
|
||||||
logger.log("The meta-model has {:} weights.".format(meta_model.numel()))
|
|
||||||
|
|
||||||
batch_sampler = EnvSampler(train_env, args.meta_batch, args.sampler_enlarge)
|
|
||||||
train_env.reset_max_seq_length(args.seq_length)
|
|
||||||
valid_env.reset_max_seq_length(args.seq_length)
|
|
||||||
valid_env_loader = torch.utils.data.DataLoader(
|
|
||||||
valid_env,
|
|
||||||
batch_size=args.meta_batch,
|
|
||||||
shuffle=True,
|
|
||||||
num_workers=args.workers,
|
|
||||||
pin_memory=True,
|
|
||||||
)
|
|
||||||
train_env_loader = torch.utils.data.DataLoader(
|
|
||||||
train_env,
|
|
||||||
batch_sampler=batch_sampler,
|
|
||||||
num_workers=args.workers,
|
|
||||||
pin_memory=True,
|
|
||||||
)
|
|
||||||
|
|
||||||
optimizer = torch.optim.Adam(
|
|
||||||
meta_model.parameters(),
|
|
||||||
lr=args.lr,
|
|
||||||
weight_decay=args.weight_decay,
|
|
||||||
amsgrad=True,
|
|
||||||
)
|
|
||||||
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
|
|
||||||
optimizer,
|
|
||||||
milestones=[1, 2, 3, 4, 5],
|
|
||||||
gamma=0.2,
|
|
||||||
)
|
|
||||||
logger.log("The base-model is\n{:}".format(base_model))
|
|
||||||
logger.log("The meta-model is\n{:}".format(meta_model))
|
|
||||||
logger.log("The optimizer is\n{:}".format(optimizer))
|
|
||||||
logger.log("The scheduler is\n{:}".format(lr_scheduler))
|
|
||||||
logger.log("Per epoch iterations = {:}".format(len(train_env_loader)))
|
|
||||||
|
|
||||||
pretrain(base_model, meta_model, criterion, train_env, args, logger)
|
|
||||||
|
|
||||||
if logger.path("model").exists():
|
|
||||||
ckp_data = torch.load(logger.path("model"))
|
|
||||||
base_model.load_state_dict(ckp_data["base_model"])
|
|
||||||
meta_model.load_state_dict(ckp_data["meta_model"])
|
|
||||||
optimizer.load_state_dict(ckp_data["optimizer"])
|
|
||||||
lr_scheduler.load_state_dict(ckp_data["lr_scheduler"])
|
|
||||||
last_success_epoch = ckp_data["last_success_epoch"]
|
|
||||||
start_epoch = ckp_data["iepoch"] + 1
|
|
||||||
check_strs = [
|
|
||||||
"epochs",
|
|
||||||
"env_version",
|
|
||||||
"hidden_dim",
|
|
||||||
"lr",
|
|
||||||
"layer_dim",
|
|
||||||
"time_dim",
|
|
||||||
"seq_length",
|
|
||||||
]
|
|
||||||
for xstr in check_strs:
|
|
||||||
cx = getattr(args, xstr)
|
|
||||||
px = getattr(ckp_data["args"], xstr)
|
|
||||||
assert cx == px, "[{:}] {:} vs {:}".format(xstr, cx, ps)
|
|
||||||
success, _ = meta_model.save_best(ckp_data["cur_score"])
|
|
||||||
logger.log("Load ckp from {:}".format(logger.path("model")))
|
|
||||||
if success:
|
|
||||||
logger.log(
|
|
||||||
"Re-save the best model with score={:}".format(ckp_data["cur_score"])
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
start_epoch, last_success_epoch = 0, 0
|
|
||||||
|
|
||||||
# LFNA meta-train
|
|
||||||
meta_model.set_best_dir(logger.path(None) / "checkpoint")
|
|
||||||
per_epoch_time, start_time = AverageMeter(), time.time()
|
|
||||||
for iepoch in range(start_epoch, args.epochs):
|
|
||||||
|
|
||||||
head_str = "[{:}] [{:04d}/{:04d}] ".format(
|
|
||||||
time_string(), iepoch, args.epochs
|
|
||||||
) + "Time Left: {:}".format(
|
|
||||||
convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True)
|
|
||||||
)
|
|
||||||
|
|
||||||
loss_meter = epoch_train(
|
|
||||||
train_env_loader,
|
|
||||||
meta_model,
|
|
||||||
base_model,
|
|
||||||
optimizer,
|
|
||||||
criterion,
|
|
||||||
args.device,
|
|
||||||
logger,
|
|
||||||
)
|
|
||||||
|
|
||||||
valid_loss_meter = epoch_evaluate(
|
|
||||||
valid_env_loader, meta_model, base_model, criterion, args.device, logger
|
|
||||||
)
|
|
||||||
logger.log(
|
|
||||||
head_str
|
|
||||||
+ " meta-train-loss: {meter.avg:.4f} ({meter.count:.0f})".format(
|
|
||||||
meter=loss_meter
|
|
||||||
)
|
|
||||||
+ " meta-valid-loss: {meter.val:.4f}".format(meter=valid_loss_meter)
|
|
||||||
+ " :: lr={:.5f}".format(min(lr_scheduler.get_last_lr()))
|
|
||||||
+ " :: last-success={:}".format(last_success_epoch)
|
|
||||||
)
|
|
||||||
success, best_score = meta_model.save_best(-loss_meter.avg)
|
|
||||||
if success:
|
|
||||||
logger.log("Achieve the best with best-score = {:.5f}".format(best_score))
|
|
||||||
last_success_epoch = iepoch
|
|
||||||
save_checkpoint(
|
|
||||||
{
|
|
||||||
"meta_model": meta_model.state_dict(),
|
|
||||||
"base_model": base_model.state_dict(),
|
|
||||||
"optimizer": optimizer.state_dict(),
|
|
||||||
"lr_scheduler": lr_scheduler.state_dict(),
|
|
||||||
"last_success_epoch": last_success_epoch,
|
|
||||||
"cur_score": -loss_meter.avg,
|
|
||||||
"iepoch": iepoch,
|
|
||||||
"args": args,
|
|
||||||
},
|
|
||||||
logger.path("model"),
|
|
||||||
logger,
|
|
||||||
)
|
|
||||||
if iepoch - last_success_epoch >= args.early_stop_thresh:
|
|
||||||
if lr_scheduler.last_epoch > 4:
|
|
||||||
logger.log("Early stop at {:}".format(iepoch))
|
|
||||||
break
|
|
||||||
else:
|
|
||||||
last_success_epoch = iepoch
|
|
||||||
lr_scheduler.step()
|
|
||||||
logger.log("Decay the lr [{:}]".format(lr_scheduler.last_epoch))
|
|
||||||
|
|
||||||
per_epoch_time.update(time.time() - start_time)
|
|
||||||
start_time = time.time()
|
|
||||||
|
|
||||||
# meta-test
|
|
||||||
meta_model.load_best()
|
|
||||||
eval_env = env_info["dynamic_env"]
|
|
||||||
w_container_per_epoch = dict()
|
|
||||||
for idx in range(args.seq_length, len(eval_env)):
|
|
||||||
# build-timestamp
|
|
||||||
future_time = env_info["{:}-timestamp".format(idx)].item()
|
|
||||||
time_seqs = []
|
|
||||||
for iseq in range(args.seq_length):
|
|
||||||
time_seqs.append(future_time - iseq * eval_env.timestamp_interval)
|
|
||||||
time_seqs.reverse()
|
|
||||||
with torch.no_grad():
|
|
||||||
meta_model.eval()
|
|
||||||
base_model.eval()
|
|
||||||
time_seqs = torch.Tensor(time_seqs).view(1, -1).to(args.device)
|
|
||||||
[seq_containers] = meta_model(time_seqs)
|
|
||||||
future_container = seq_containers[-1]
|
|
||||||
w_container_per_epoch[idx] = future_container.no_grad_clone()
|
|
||||||
# evaluation
|
|
||||||
future_x = env_info["{:}-x".format(idx)].to(args.device)
|
|
||||||
future_y = env_info["{:}-y".format(idx)].to(args.device)
|
|
||||||
future_y_hat = base_model.forward_with_container(
|
|
||||||
future_x, w_container_per_epoch[idx]
|
|
||||||
)
|
|
||||||
future_loss = criterion(future_y_hat, future_y)
|
|
||||||
logger.log(
|
|
||||||
"meta-test: [{:03d}] -> loss={:.4f}".format(idx, future_loss.item())
|
|
||||||
)
|
|
||||||
|
|
||||||
# creating the new meta-time-embedding
|
|
||||||
distance = meta_model.get_closest_meta_distance(future_time)
|
|
||||||
if distance < eval_env.timestamp_interval:
|
|
||||||
continue
|
|
||||||
#
|
|
||||||
new_param = meta_model.create_meta_embed()
|
|
||||||
optimizer = torch.optim.Adam(
|
|
||||||
[new_param], lr=args.refine_lr, weight_decay=1e-5, amsgrad=True
|
|
||||||
)
|
|
||||||
meta_model.replace_append_learnt(
|
|
||||||
torch.Tensor([future_time]).to(args.device), new_param
|
|
||||||
)
|
|
||||||
meta_model.eval()
|
|
||||||
base_model.train()
|
|
||||||
for iepoch in range(args.refine_epochs):
|
|
||||||
optimizer.zero_grad()
|
|
||||||
[seq_containers] = meta_model(time_seqs)
|
|
||||||
future_container = seq_containers[-1]
|
|
||||||
future_y_hat = base_model.forward_with_container(future_x, future_container)
|
|
||||||
future_loss = criterion(future_y_hat, future_y)
|
|
||||||
future_loss.backward()
|
|
||||||
optimizer.step()
|
|
||||||
logger.log(
|
|
||||||
"post-meta-test: [{:03d}] -> loss={:.4f}".format(idx, future_loss.item())
|
|
||||||
)
|
|
||||||
with torch.no_grad():
|
|
||||||
meta_model.replace_append_learnt(None, None)
|
|
||||||
meta_model.append_fixed(torch.Tensor([future_time]), new_param)
|
|
||||||
|
|
||||||
save_checkpoint(
|
|
||||||
{"w_container_per_epoch": w_container_per_epoch},
|
|
||||||
logger.path(None) / "final-ckp.pth",
|
|
||||||
logger,
|
|
||||||
)
|
|
||||||
|
|
||||||
logger.log("-" * 200 + "\n")
|
|
||||||
logger.close()
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
parser = argparse.ArgumentParser(".")
|
|
||||||
parser.add_argument(
|
|
||||||
"--save_dir",
|
|
||||||
type=str,
|
|
||||||
default="./outputs/lfna-synthetic/lfna-battle",
|
|
||||||
help="The checkpoint directory.",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--env_version",
|
|
||||||
type=str,
|
|
||||||
required=True,
|
|
||||||
help="The synthetic enviornment version.",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--hidden_dim",
|
|
||||||
type=int,
|
|
||||||
default=16,
|
|
||||||
help="The hidden dimension.",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--layer_dim",
|
|
||||||
type=int,
|
|
||||||
default=16,
|
|
||||||
help="The layer chunk dimension.",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--time_dim",
|
|
||||||
type=int,
|
|
||||||
default=16,
|
|
||||||
help="The timestamp dimension.",
|
|
||||||
)
|
|
||||||
#####
|
|
||||||
parser.add_argument(
|
|
||||||
"--lr",
|
|
||||||
type=float,
|
|
||||||
default=0.002,
|
|
||||||
help="The initial learning rate for the optimizer (default is Adam)",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--weight_decay",
|
|
||||||
type=float,
|
|
||||||
default=0.00001,
|
|
||||||
help="The weight decay for the optimizer (default is Adam)",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--meta_batch",
|
|
||||||
type=int,
|
|
||||||
default=64,
|
|
||||||
help="The batch size for the meta-model",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--sampler_enlarge",
|
|
||||||
type=int,
|
|
||||||
default=5,
|
|
||||||
help="Enlarge the #iterations for an epoch",
|
|
||||||
)
|
|
||||||
parser.add_argument("--epochs", type=int, default=10000, help="The total #epochs.")
|
|
||||||
parser.add_argument(
|
|
||||||
"--refine_lr",
|
|
||||||
type=float,
|
|
||||||
default=0.005,
|
|
||||||
help="The learning rate for the optimizer, during refine",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--refine_epochs", type=int, default=1000, help="The final refine #epochs."
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--early_stop_thresh",
|
|
||||||
type=int,
|
|
||||||
default=20,
|
|
||||||
help="The #epochs for early stop.",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--seq_length", type=int, default=10, help="The sequence length."
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--workers", type=int, default=4, help="The number of workers in parallel."
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--device",
|
|
||||||
type=str,
|
|
||||||
default="cpu",
|
|
||||||
help="",
|
|
||||||
)
|
|
||||||
# Random Seed
|
|
||||||
parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")
|
|
||||||
args = parser.parse_args()
|
|
||||||
if args.rand_seed is None or args.rand_seed < 0:
|
|
||||||
args.rand_seed = random.randint(1, 100000)
|
|
||||||
assert args.save_dir is not None, "The save dir argument can not be None"
|
|
||||||
args.save_dir = "{:}-d{:}_{:}_{:}-s{:}-lr{:}-wd{:}-e{:}-env{:}".format(
|
|
||||||
args.save_dir,
|
|
||||||
args.hidden_dim,
|
|
||||||
args.layer_dim,
|
|
||||||
args.time_dim,
|
|
||||||
args.seq_length,
|
|
||||||
args.lr,
|
|
||||||
args.weight_decay,
|
|
||||||
args.epochs,
|
|
||||||
args.env_version,
|
|
||||||
)
|
|
||||||
main(args)
|
|
@ -1,8 +1,8 @@
|
|||||||
#####################################################
|
#####################################################
|
||||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
|
||||||
#####################################################
|
#####################################################
|
||||||
# python exps/LFNA/basic-same.py --env_version v1 --hidden_dim 16 --epochs 500 --init_lr 0.1
|
# python exps/GeMOSA/basic-same.py --env_version v1 --hidden_dim 16 --epochs 500 --init_lr 0.1
|
||||||
# python exps/LFNA/basic-same.py --env_version v2 --hidden_dim 16 --epochs 1000 --init_lr 0.05
|
# python exps/GeMOSA/basic-same.py --env_version v2 --hidden_dim 16 --epochs 1000 --init_lr 0.05
|
||||||
#####################################################
|
#####################################################
|
||||||
import sys, time, copy, torch, random, argparse
|
import sys, time, copy, torch, random, argparse
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
@ -181,21 +181,20 @@ class MetaModelV1(super_core.SuperModule):
|
|||||||
timestamp_v_embed,
|
timestamp_v_embed,
|
||||||
mask,
|
mask,
|
||||||
)
|
)
|
||||||
return timestamp_embeds
|
return timestamp_embeds[:, -1, :]
|
||||||
|
|
||||||
def forward_raw(self, timestamps, time_embeds, tembed_only=False):
|
def forward_raw(self, timestamps, time_embeds, tembed_only=False):
|
||||||
if time_embeds is None:
|
if time_embeds is None:
|
||||||
time_seq = timestamps.view(-1, 1) + self._time_interval.view(1, -1)
|
time_seq = timestamps.view(-1, 1) + self._time_interval.view(1, -1)
|
||||||
B, S = time_seq.shape
|
B, S = time_seq.shape
|
||||||
time_embeds = self._obtain_time_embed(time_seq)
|
time_embeds = self._obtain_time_embed(time_seq)
|
||||||
else:
|
else: # use the hyper-net only
|
||||||
time_seq = None
|
time_seq = None
|
||||||
B, S, _ = time_embeds.shape
|
B, _ = time_embeds.shape
|
||||||
# create joint embed
|
|
||||||
num_layer, _ = self._super_layer_embed.shape
|
|
||||||
time_embeds = time_embeds[:, -1, :]
|
|
||||||
if tembed_only:
|
if tembed_only:
|
||||||
return time_embeds
|
return time_embeds
|
||||||
|
# create joint embed
|
||||||
|
num_layer, _ = self._super_layer_embed.shape
|
||||||
# The shape of `joint_embed` is batch * num-layers * input-dim
|
# The shape of `joint_embed` is batch * num-layers * input-dim
|
||||||
joint_embeds = torch.cat(
|
joint_embeds = torch.cat(
|
||||||
(
|
(
|
@ -1,10 +1,10 @@
|
|||||||
#####################################################
|
#####################################################
|
||||||
# Learning to Generate Model One Step Ahead #
|
# Learning to Generate Model One Step Ahead #
|
||||||
#####################################################
|
#####################################################
|
||||||
# python exps/GMOA/lfna.py --env_version v1 --workers 0
|
# python exps/GeMOSA/lfna.py --env_version v1 --workers 0
|
||||||
# python exps/GMOA/lfna.py --env_version v1 --device cuda --lr 0.001
|
# python exps/GeMOSA/lfna.py --env_version v1 --device cuda --lr 0.001
|
||||||
# python exps/GMOA/lfna.py --env_version v1 --device cuda --lr 0.002 --seq_length 16 --meta_batch 128
|
# python exps/GeMOSA/main.py --env_version v1 --device cuda --lr 0.002 --seq_length 16 --meta_batch 128
|
||||||
# python exps/GMOA/lfna.py --env_version v1 --device cuda --lr 0.002 --seq_length 24 --time_dim 32 --meta_batch 128
|
# python exps/GeMOSA/lfna.py --env_version v1 --device cuda --lr 0.002 --seq_length 24 --time_dim 32 --meta_batch 128
|
||||||
#####################################################
|
#####################################################
|
||||||
import sys, time, copy, torch, random, argparse
|
import sys, time, copy, torch, random, argparse
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
@ -38,63 +38,6 @@ from lfna_utils import lfna_setup, train_model, TimeData
|
|||||||
from lfna_meta_model import MetaModelV1
|
from lfna_meta_model import MetaModelV1
|
||||||
|
|
||||||
|
|
||||||
def epoch_train(loader, meta_model, base_model, optimizer, criterion, device, logger):
|
|
||||||
base_model.train()
|
|
||||||
meta_model.train()
|
|
||||||
loss_meter = AverageMeter()
|
|
||||||
for ibatch, batch_data in enumerate(loader):
|
|
||||||
timestamps, (batch_seq_inputs, batch_seq_targets) = batch_data
|
|
||||||
timestamps = timestamps.squeeze(dim=-1).to(device)
|
|
||||||
batch_seq_inputs = batch_seq_inputs.to(device)
|
|
||||||
batch_seq_targets = batch_seq_targets.to(device)
|
|
||||||
|
|
||||||
optimizer.zero_grad()
|
|
||||||
|
|
||||||
batch_seq_containers = meta_model(timestamps)
|
|
||||||
losses = []
|
|
||||||
for seq_containers, seq_inputs, seq_targets in zip(
|
|
||||||
batch_seq_containers, batch_seq_inputs, batch_seq_targets
|
|
||||||
):
|
|
||||||
for container, inputs, targets in zip(
|
|
||||||
seq_containers, seq_inputs, seq_targets
|
|
||||||
):
|
|
||||||
predictions = base_model.forward_with_container(inputs, container)
|
|
||||||
loss = criterion(predictions, targets)
|
|
||||||
losses.append(loss)
|
|
||||||
final_loss = torch.stack(losses).mean()
|
|
||||||
final_loss.backward()
|
|
||||||
optimizer.step()
|
|
||||||
loss_meter.update(final_loss.item())
|
|
||||||
return loss_meter
|
|
||||||
|
|
||||||
|
|
||||||
def epoch_evaluate(loader, meta_model, base_model, criterion, device, logger):
|
|
||||||
with torch.no_grad():
|
|
||||||
base_model.eval()
|
|
||||||
meta_model.eval()
|
|
||||||
loss_meter = AverageMeter()
|
|
||||||
for ibatch, batch_data in enumerate(loader):
|
|
||||||
timestamps, (batch_seq_inputs, batch_seq_targets) = batch_data
|
|
||||||
timestamps = timestamps.squeeze(dim=-1).to(device)
|
|
||||||
batch_seq_inputs = batch_seq_inputs.to(device)
|
|
||||||
batch_seq_targets = batch_seq_targets.to(device)
|
|
||||||
|
|
||||||
batch_seq_containers = meta_model(timestamps)
|
|
||||||
losses = []
|
|
||||||
for seq_containers, seq_inputs, seq_targets in zip(
|
|
||||||
batch_seq_containers, batch_seq_inputs, batch_seq_targets
|
|
||||||
):
|
|
||||||
for container, inputs, targets in zip(
|
|
||||||
seq_containers, seq_inputs, seq_targets
|
|
||||||
):
|
|
||||||
predictions = base_model.forward_with_container(inputs, container)
|
|
||||||
loss = criterion(predictions, targets)
|
|
||||||
losses.append(loss)
|
|
||||||
final_loss = torch.stack(losses).mean()
|
|
||||||
loss_meter.update(final_loss.item())
|
|
||||||
return loss_meter
|
|
||||||
|
|
||||||
|
|
||||||
def online_evaluate(env, meta_model, base_model, criterion, args, logger, save=False):
|
def online_evaluate(env, meta_model, base_model, criterion, args, logger, save=False):
|
||||||
logger.log("Online evaluate: {:}".format(env))
|
logger.log("Online evaluate: {:}".format(env))
|
||||||
loss_meter = AverageMeter()
|
loss_meter = AverageMeter()
|
||||||
@ -133,7 +76,7 @@ def online_evaluate(env, meta_model, base_model, criterion, args, logger, save=F
|
|||||||
return w_containers, loss_meter
|
return w_containers, loss_meter
|
||||||
|
|
||||||
|
|
||||||
def pretrain_v2(base_model, meta_model, criterion, xenv, args, logger):
|
def meta_train_procedure(base_model, meta_model, criterion, xenv, args, logger):
|
||||||
base_model.train()
|
base_model.train()
|
||||||
meta_model.train()
|
meta_model.train()
|
||||||
optimizer = torch.optim.Adam(
|
optimizer = torch.optim.Adam(
|
||||||
@ -152,6 +95,7 @@ def pretrain_v2(base_model, meta_model, criterion, xenv, args, logger):
|
|||||||
logger.log("Directly load the best model from {:}".format(final_best_name))
|
logger.log("Directly load the best model from {:}".format(final_best_name))
|
||||||
return
|
return
|
||||||
|
|
||||||
|
total_indexes = list(range(meta_model.meta_length))
|
||||||
meta_model.set_best_name("pretrain-{:}.pth".format(args.rand_seed))
|
meta_model.set_best_name("pretrain-{:}.pth".format(args.rand_seed))
|
||||||
last_success_epoch, early_stop_thresh = 0, args.pretrain_early_stop_thresh
|
last_success_epoch, early_stop_thresh = 0, args.pretrain_early_stop_thresh
|
||||||
per_epoch_time, start_time = AverageMeter(), time.time()
|
per_epoch_time, start_time = AverageMeter(), time.time()
|
||||||
@ -160,47 +104,50 @@ def pretrain_v2(base_model, meta_model, criterion, xenv, args, logger):
|
|||||||
left_time = "Time Left: {:}".format(
|
left_time = "Time Left: {:}".format(
|
||||||
convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True)
|
convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True)
|
||||||
)
|
)
|
||||||
total_future_losses, total_present_losses, total_regu_losses = [], [], []
|
|
||||||
optimizer.zero_grad()
|
optimizer.zero_grad()
|
||||||
for ibatch in range(args.meta_batch):
|
|
||||||
rand_index = random.randint(0, meta_model.meta_length - 1)
|
|
||||||
timestamp = meta_model.meta_timestamps[rand_index]
|
|
||||||
|
|
||||||
_, [container], time_embed = meta_model(
|
generated_time_embeds = meta_model(meta_model.meta_timestamps, None, True)
|
||||||
torch.unsqueeze(timestamp, dim=0), None, False
|
|
||||||
)
|
batch_indexes = random.choices(total_indexes, k=args.meta_batch)
|
||||||
_, (inputs, targets) = xenv(timestamp.item())
|
|
||||||
|
raw_time_steps = meta_model.meta_timestamps[batch_indexes]
|
||||||
|
|
||||||
|
regularization_loss = F.l1_loss(
|
||||||
|
generated_time_embeds, meta_model.super_meta_embed, reduction="mean"
|
||||||
|
)
|
||||||
|
# future loss
|
||||||
|
total_future_losses, total_present_losses = [], []
|
||||||
|
_, future_containers, _ = meta_model(
|
||||||
|
None, generated_time_embeds[batch_indexes], False
|
||||||
|
)
|
||||||
|
_, present_containers, _ = meta_model(
|
||||||
|
None, meta_model.super_meta_embed[batch_indexes], False
|
||||||
|
)
|
||||||
|
for ibatch, time_step in enumerate(raw_time_steps.cpu().tolist()):
|
||||||
|
_, (inputs, targets) = xenv(time_step)
|
||||||
inputs, targets = inputs.to(device), targets.to(device)
|
inputs, targets = inputs.to(device), targets.to(device)
|
||||||
# generate models one step ahead
|
|
||||||
predictions = base_model.forward_with_container(inputs, container)
|
|
||||||
total_future_losses.append(criterion(predictions, targets))
|
|
||||||
# randomly sample
|
|
||||||
rand_index = random.randint(0, meta_model.meta_length - 1)
|
|
||||||
timestamp = meta_model.meta_timestamps[rand_index]
|
|
||||||
meta_embed = meta_model.super_meta_embed[rand_index]
|
|
||||||
|
|
||||||
time_embed = meta_model(torch.unsqueeze(timestamp, dim=0), None, True)
|
predictions = base_model.forward_with_container(
|
||||||
total_regu_losses.append(
|
inputs, future_containers[ibatch]
|
||||||
F.mse_loss(
|
)
|
||||||
torch.squeeze(time_embed, dim=0), meta_embed, reduction="mean"
|
total_future_losses.append(criterion(predictions, targets))
|
||||||
)
|
|
||||||
|
predictions = base_model.forward_with_container(
|
||||||
|
inputs, present_containers[ibatch]
|
||||||
)
|
)
|
||||||
# generate models via memory
|
|
||||||
_, [container], _ = meta_model(None, meta_embed.view(1, 1, -1), False)
|
|
||||||
predictions = base_model.forward_with_container(inputs, container)
|
|
||||||
total_present_losses.append(criterion(predictions, targets))
|
total_present_losses.append(criterion(predictions, targets))
|
||||||
|
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
meta_std = torch.stack(total_future_losses).std().item()
|
meta_std = torch.stack(total_future_losses).std().item()
|
||||||
loss_future = torch.stack(total_future_losses).mean()
|
loss_future = torch.stack(total_future_losses).mean()
|
||||||
loss_present = torch.stack(total_present_losses).mean()
|
loss_present = torch.stack(total_present_losses).mean()
|
||||||
regularization_loss = torch.stack(total_regu_losses).mean()
|
|
||||||
total_loss = loss_future + loss_present + regularization_loss
|
total_loss = loss_future + loss_present + regularization_loss
|
||||||
total_loss.backward()
|
total_loss.backward()
|
||||||
optimizer.step()
|
optimizer.step()
|
||||||
# success
|
# success
|
||||||
success, best_score = meta_model.save_best(-total_loss.item())
|
success, best_score = meta_model.save_best(-total_loss.item())
|
||||||
logger.log(
|
logger.log(
|
||||||
"{:} [Pre-V2 {:04d}/{:}] loss : {:.4f} +- {:.4f} = {:.4f} + {:.4f} + {:.4f}".format(
|
"{:} [META {:04d}/{:}] loss : {:.4f} +- {:.4f} = {:.4f} + {:.4f} + {:.4f}".format(
|
||||||
time_string(),
|
time_string(),
|
||||||
iepoch,
|
iepoch,
|
||||||
args.epochs,
|
args.epochs,
|
||||||
@ -264,7 +211,7 @@ def main(args):
|
|||||||
logger.log("The base-model is\n{:}".format(base_model))
|
logger.log("The base-model is\n{:}".format(base_model))
|
||||||
logger.log("The meta-model is\n{:}".format(meta_model))
|
logger.log("The meta-model is\n{:}".format(meta_model))
|
||||||
|
|
||||||
pretrain_v2(base_model, meta_model, criterion, trainval_env, args, logger)
|
meta_train_procedure(base_model, meta_model, criterion, trainval_env, args, logger)
|
||||||
|
|
||||||
# try to evaluate once
|
# try to evaluate once
|
||||||
# online_evaluate(train_env, meta_model, base_model, criterion, args, logger)
|
# online_evaluate(train_env, meta_model, base_model, criterion, args, logger)
|
Loading…
Reference in New Issue
Block a user