simplify baselines

This commit is contained in:
D-X-Y 2019-12-31 22:02:11 +11:00
parent f8f44bfb31
commit 9ec25663f1
12 changed files with 338 additions and 124 deletions

View File

@ -0,0 +1,193 @@
##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
########################################################
# python exps/NAS-Bench-102/test-correlation.py --api_path $HOME/.torch/NAS-Bench-102-v1_0-e61699.pth
########################################################
import os, sys, time, glob, random, argparse
import numpy as np
from copy import deepcopy
import torch
import torch.nn as nn
from pathlib import Path
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
from config_utils import load_config, dict2config, configure2str
from datasets import get_datasets, SearchDataset
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler
from utils import get_model_infos, obtain_accuracy
from log_utils import AverageMeter, time_string, convert_secs2time
from models import get_cell_based_tiny_net, get_search_spaces, CellStructure
from nas_102_api import NASBench102API as API
def valid_func(xloader, network, criterion):
data_time, batch_time = AverageMeter(), AverageMeter()
arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter()
network.eval()
end = time.time()
with torch.no_grad():
for step, (arch_inputs, arch_targets) in enumerate(xloader):
arch_targets = arch_targets.cuda(non_blocking=True)
# measure data loading time
data_time.update(time.time() - end)
# prediction
_, logits = network(arch_inputs)
arch_loss = criterion(logits, arch_targets)
# record
arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5))
arch_losses.update(arch_loss.item(), arch_inputs.size(0))
arch_top1.update (arch_prec1.item(), arch_inputs.size(0))
arch_top5.update (arch_prec5.item(), arch_inputs.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
return arch_losses.avg, arch_top1.avg, arch_top5.avg
def main(xargs):
assert torch.cuda.is_available(), 'CUDA is not available.'
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
torch.set_num_threads( xargs.workers )
prepare_seed(xargs.rand_seed)
logger = prepare_logger(args)
train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1)
if xargs.dataset == 'cifar10' or xargs.dataset == 'cifar100':
split_Fpath = 'configs/nas-benchmark/cifar-split.txt'
cifar_split = load_config(split_Fpath, None, None)
train_split, valid_split = cifar_split.train, cifar_split.valid
logger.log('Load split file from {:}'.format(split_Fpath))
elif xargs.dataset.startswith('ImageNet16'):
split_Fpath = 'configs/nas-benchmark/{:}-split.txt'.format(xargs.dataset)
imagenet16_split = load_config(split_Fpath, None, None)
train_split, valid_split = imagenet16_split.train, imagenet16_split.valid
logger.log('Load split file from {:}'.format(split_Fpath))
else:
raise ValueError('invalid dataset : {:}'.format(xargs.dataset))
config_path = 'configs/nas-benchmark/algos/DARTS.config'
config = load_config(config_path, {'class_num': class_num, 'xshape': xshape}, logger)
# To split data
train_data_v2 = deepcopy(train_data)
train_data_v2.transform = valid_data.transform
valid_data = train_data_v2
search_data = SearchDataset(xargs.dataset, train_data, train_split, valid_split)
# data loader
search_loader = torch.utils.data.DataLoader(search_data, batch_size=config.batch_size, shuffle=True , num_workers=xargs.workers, pin_memory=True)
valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), num_workers=xargs.workers, pin_memory=True)
logger.log('||||||| {:10s} ||||||| Search-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(xargs.dataset, len(search_loader), len(valid_loader), config.batch_size))
logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config))
search_space = get_search_spaces('cell', xargs.search_space_name)
model_config = dict2config({'name': 'DARTS-V2', 'C': xargs.channel, 'N': xargs.num_cells,
'max_nodes': xargs.max_nodes, 'num_classes': class_num,
'space' : search_space}, None)
search_model = get_cell_based_tiny_net(model_config)
logger.log('search-model :\n{:}'.format(search_model))
w_optimizer, w_scheduler, criterion = get_optim_scheduler(search_model.get_weights(), config)
a_optimizer = torch.optim.Adam(search_model.get_alphas(), lr=xargs.arch_learning_rate, betas=(0.5, 0.999), weight_decay=xargs.arch_weight_decay)
logger.log('w-optimizer : {:}'.format(w_optimizer))
logger.log('a-optimizer : {:}'.format(a_optimizer))
logger.log('w-scheduler : {:}'.format(w_scheduler))
logger.log('criterion : {:}'.format(criterion))
flop, param = get_model_infos(search_model, xshape)
#logger.log('{:}'.format(search_model))
logger.log('FLOP = {:.2f} M, Params = {:.2f} MB'.format(flop, param))
if xargs.arch_nas_dataset is None:
api = None
else:
api = API(xargs.arch_nas_dataset)
logger.log('{:} create API = {:} done'.format(time_string(), api))
last_info, model_base_path, model_best_path = logger.path('info'), logger.path('model'), logger.path('best')
network, criterion = torch.nn.DataParallel(search_model).cuda(), criterion.cuda()
logger.close()
def check_unique_arch(meta_file):
api = API(str(meta_file))
arch_strs = deepcopy(api.meta_archs)
xarchs = [CellStructure.str2structure(x) for x in arch_strs]
def get_unique_matrix(archs, consider_zero):
UniquStrs = [arch.to_unique_str(consider_zero) for arch in archs]
print ('{:} create unique-string ({:}/{:}) done'.format(time_string(), len(set(UniquStrs)), len(UniquStrs)))
Unique2Index = dict()
for index, xstr in enumerate(UniquStrs):
if xstr not in Unique2Index: Unique2Index[xstr] = list()
Unique2Index[xstr].append( index )
sm_matrix = torch.eye(len(archs)).bool()
for _, xlist in Unique2Index.items():
for i in xlist:
for j in xlist:
sm_matrix[i,j] = True
unique_ids, unique_num = [-1 for _ in archs], 0
for i in range(len(unique_ids)):
if unique_ids[i] > -1: continue
neighbours = sm_matrix[i].nonzero().view(-1).tolist()
for nghb in neighbours:
assert unique_ids[nghb] == -1, 'impossible'
unique_ids[nghb] = unique_num
unique_num += 1
return sm_matrix, unique_ids, unique_num
print ('There are {:} valid-archs'.format( sum(arch.check_valid() for arch in xarchs) ))
sm_matrix, uniqueIDs, unique_num = get_unique_matrix(xarchs, None)
print ('{:} There are {:} unique architectures (considering nothing).'.format(time_string(), unique_num))
sm_matrix, uniqueIDs, unique_num = get_unique_matrix(xarchs, False)
print ('{:} There are {:} unique architectures (not considering zero).'.format(time_string(), unique_num))
sm_matrix, uniqueIDs, unique_num = get_unique_matrix(xarchs, True)
print ('{:} There are {:} unique architectures (considering zero).'.format(time_string(), unique_num))
def check_cor_for_bandit(meta_file, test_epoch, use_less_or_not, is_rand=True):
if isinstance(meta_file, API):
api = meta_file
else:
api = API(str(meta_file))
cifar10_valid = []
cifar10_test = []
cifar100_test = []
imagenet_test = []
for idx, arch in enumerate(api):
results = api.get_more_info(idx, 'cifar10-valid' , test_epoch-1, use_less_or_not, is_rand)
cifar10_valid.append( results['valid-accuracy'] )
results = api.get_more_info(idx, 'cifar10' , None, False, is_rand)
cifar10_test.append( results['test-accuracy'] )
results = api.get_more_info(idx, 'cifar100' , None, False, is_rand)
cifar100_test.append( results['test-accuracy'] )
results = api.get_more_info(idx, 'ImageNet16-120', None, False, is_rand)
imagenet_test.append( results['test-accuracy'] )
def get_cor(A, B):
return float(np.corrcoef(A, B)[0,1])
cors = []
for basestr, xlist in zip(['CIFAR-010', 'CIFAR-100', 'ImageNet16'], [cifar10_test,cifar100_test, imagenet_test]):
correlation = get_cor(cifar10_valid, xlist)
print ('With {:3d}/{:}-epochs-training, the correlation between cifar10-valid and {:} is : {:}'.format(less_epoch, '012' if use_less_or_not else '200', basestr, correlation))
cors.append( correlation )
#print ('With {:3d}/200-epochs-training, the correlation between cifar10-valid and {:} is : {:}'.format(test_epoch, basestr, get_cor(cifar10_valid_200, xlist)))
#print('-'*200)
#print('*'*230)
return cors
if __name__ == '__main__':
parser = argparse.ArgumentParser("Analysis of NAS-Bench-102")
parser.add_argument('--save_dir', type=str, default='./output/search-cell-nas-bench-102/visuals', help='The base-name of folder to save checkpoints and log.')
parser.add_argument('--api_path', type=str, default=None, help='The path to the NAS-Bench-102 benchmark file.')
args = parser.parse_args()
vis_save_dir = Path(args.save_dir)
vis_save_dir.mkdir(parents=True, exist_ok=True)
meta_file = Path(args.api_path)
assert meta_file.exists(), 'invalid path for api : {:}'.format(meta_file)
#check_unique_arch(meta_file)
api = API(str(meta_file))
#for iepoch in [11, 25, 50, 100, 150, 175, 200]:
# check_cor_for_bandit(api, 6, iepoch)
# check_cor_for_bandit(api, 12, iepoch)
correlations = check_cor_for_bandit(api, 6, True, True)
import pdb; pdb.set_trace()

View File

@ -370,17 +370,17 @@ def write_video(save_dir):
if __name__ == '__main__': if __name__ == '__main__':
parser = argparse.ArgumentParser(description='NAS-Bench-102', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser = argparse.ArgumentParser(description='NAS-Bench-102', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--save_dir', type=str, default='./output/search-cell-nas-bench-102/visual', help='The base-name of folder to save checkpoints and log.') parser.add_argument('--save_dir', type=str, default='./output/search-cell-nas-bench-102/visuals', help='The base-name of folder to save checkpoints and log.')
parser.add_argument('--api_path', type=str, default=None, help='The path to the NAS-Bench-102 benchmark file.') parser.add_argument('--api_path', type=str, default=None, help='The path to the NAS-Bench-102 benchmark file.')
args = parser.parse_args() args = parser.parse_args()
vis_save_dir = Path(args.save_dir) / 'visuals' vis_save_dir = Path(args.save_dir)
vis_save_dir.mkdir(parents=True, exist_ok=True) vis_save_dir.mkdir(parents=True, exist_ok=True)
meta_file = Path(args.api_path) meta_file = Path(args.api_path)
assert meta_file.exists(), 'invalid path for api : {:}'.format(meta_file) assert meta_file.exists(), 'invalid path for api : {:}'.format(meta_file)
visualize_rank_over_time(str(meta_file), vis_save_dir / 'over-time') #visualize_rank_over_time(str(meta_file), vis_save_dir / 'over-time')
write_video(vis_save_dir / 'over-time') #write_video(vis_save_dir / 'over-time')
visualize_info(str(meta_file), 'cifar10' , vis_save_dir) #visualize_info(str(meta_file), 'cifar10' , vis_save_dir)
visualize_info(str(meta_file), 'cifar100', vis_save_dir) #visualize_info(str(meta_file), 'cifar100', vis_save_dir)
visualize_info(str(meta_file), 'ImageNet16-120', vis_save_dir) #visualize_info(str(meta_file), 'ImageNet16-120', vis_save_dir)
visualize_relative_ranking(vis_save_dir) visualize_relative_ranking(vis_save_dir)

View File

@ -110,25 +110,30 @@ def main(xargs, nas_bench):
logger = prepare_logger(args) logger = prepare_logger(args)
assert xargs.dataset == 'cifar10', 'currently only support CIFAR-10' assert xargs.dataset == 'cifar10', 'currently only support CIFAR-10'
train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1) if xargs.data_path is not None:
split_Fpath = 'configs/nas-benchmark/cifar-split.txt' train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1)
cifar_split = load_config(split_Fpath, None, None) split_Fpath = 'configs/nas-benchmark/cifar-split.txt'
train_split, valid_split = cifar_split.train, cifar_split.valid cifar_split = load_config(split_Fpath, None, None)
logger.log('Load split file from {:}'.format(split_Fpath)) train_split, valid_split = cifar_split.train, cifar_split.valid
config_path = 'configs/nas-benchmark/algos/R-EA.config' logger.log('Load split file from {:}'.format(split_Fpath))
config = load_config(config_path, {'class_num': class_num, 'xshape': xshape}, logger) config_path = 'configs/nas-benchmark/algos/R-EA.config'
# To split data config = load_config(config_path, {'class_num': class_num, 'xshape': xshape}, logger)
train_data_v2 = deepcopy(train_data) # To split data
train_data_v2.transform = valid_data.transform train_data_v2 = deepcopy(train_data)
valid_data = train_data_v2 train_data_v2.transform = valid_data.transform
search_data = SearchDataset(xargs.dataset, train_data, train_split, valid_split) valid_data = train_data_v2
# data loader search_data = SearchDataset(xargs.dataset, train_data, train_split, valid_split)
train_loader = torch.utils.data.DataLoader(train_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(train_split) , num_workers=xargs.workers, pin_memory=True) # data loader
valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), num_workers=xargs.workers, pin_memory=True) train_loader = torch.utils.data.DataLoader(train_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(train_split) , num_workers=xargs.workers, pin_memory=True)
logger.log('||||||| {:10s} ||||||| Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(xargs.dataset, len(train_loader), len(valid_loader), config.batch_size)) valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), num_workers=xargs.workers, pin_memory=True)
logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config)) logger.log('||||||| {:10s} ||||||| Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(xargs.dataset, len(train_loader), len(valid_loader), config.batch_size))
extra_info = {'config': config, 'train_loader': train_loader, 'valid_loader': valid_loader} logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config))
extra_info = {'config': config, 'train_loader': train_loader, 'valid_loader': valid_loader}
else:
config_path = 'configs/nas-benchmark/algos/R-EA.config'
config = load_config(config_path, None, logger)
logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config))
extra_info = {'config': config, 'train_loader': None, 'valid_loader': None}
# nas dataset load # nas dataset load
assert xargs.arch_nas_dataset is not None and os.path.isfile(xargs.arch_nas_dataset) assert xargs.arch_nas_dataset is not None and os.path.isfile(xargs.arch_nas_dataset)

View File

@ -29,25 +29,30 @@ def main(xargs, nas_bench):
logger = prepare_logger(args) logger = prepare_logger(args)
assert xargs.dataset == 'cifar10', 'currently only support CIFAR-10' assert xargs.dataset == 'cifar10', 'currently only support CIFAR-10'
train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1) if xargs.data_path is not None:
split_Fpath = 'configs/nas-benchmark/cifar-split.txt' train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1)
cifar_split = load_config(split_Fpath, None, None) split_Fpath = 'configs/nas-benchmark/cifar-split.txt'
train_split, valid_split = cifar_split.train, cifar_split.valid cifar_split = load_config(split_Fpath, None, None)
logger.log('Load split file from {:}'.format(split_Fpath)) train_split, valid_split = cifar_split.train, cifar_split.valid
config_path = 'configs/nas-benchmark/algos/R-EA.config' logger.log('Load split file from {:}'.format(split_Fpath))
config = load_config(config_path, {'class_num': class_num, 'xshape': xshape}, logger) config_path = 'configs/nas-benchmark/algos/R-EA.config'
# To split data config = load_config(config_path, {'class_num': class_num, 'xshape': xshape}, logger)
train_data_v2 = deepcopy(train_data) # To split data
train_data_v2.transform = valid_data.transform train_data_v2 = deepcopy(train_data)
valid_data = train_data_v2 train_data_v2.transform = valid_data.transform
search_data = SearchDataset(xargs.dataset, train_data, train_split, valid_split) valid_data = train_data_v2
# data loader search_data = SearchDataset(xargs.dataset, train_data, train_split, valid_split)
train_loader = torch.utils.data.DataLoader(train_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(train_split) , num_workers=xargs.workers, pin_memory=True) # data loader
valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), num_workers=xargs.workers, pin_memory=True) train_loader = torch.utils.data.DataLoader(train_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(train_split) , num_workers=xargs.workers, pin_memory=True)
logger.log('||||||| {:10s} ||||||| Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(xargs.dataset, len(train_loader), len(valid_loader), config.batch_size)) valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), num_workers=xargs.workers, pin_memory=True)
logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config)) logger.log('||||||| {:10s} ||||||| Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(xargs.dataset, len(train_loader), len(valid_loader), config.batch_size))
extra_info = {'config': config, 'train_loader': train_loader, 'valid_loader': valid_loader} logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config))
extra_info = {'config': config, 'train_loader': train_loader, 'valid_loader': valid_loader}
else:
config_path = 'configs/nas-benchmark/algos/R-EA.config'
config = load_config(config_path, None, logger)
logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config))
extra_info = {'config': config, 'train_loader': None, 'valid_loader': None}
search_space = get_search_spaces('cell', xargs.search_space_name) search_space = get_search_spaces('cell', xargs.search_space_name)
random_arch = random_architecture_func(xargs.max_nodes, search_space) random_arch = random_architecture_func(xargs.max_nodes, search_space)
#x =random_arch() ; y = mutate_arch(x) #x =random_arch() ; y = mutate_arch(x)
@ -71,7 +76,7 @@ def main(xargs, nas_bench):
logger.log('-'*100) logger.log('-'*100)
logger.close() logger.close()
return logger.log_dir, nas_bench.query_index_by_arch( best_arch ) return logger.log_dir, nas_bench.query_index_by_arch( best_arch )
if __name__ == '__main__': if __name__ == '__main__':

View File

@ -172,24 +172,30 @@ def main(xargs, nas_bench):
logger = prepare_logger(args) logger = prepare_logger(args)
assert xargs.dataset == 'cifar10', 'currently only support CIFAR-10' assert xargs.dataset == 'cifar10', 'currently only support CIFAR-10'
train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1) if xargs.data_path is not None:
split_Fpath = 'configs/nas-benchmark/cifar-split.txt' train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1)
cifar_split = load_config(split_Fpath, None, None) split_Fpath = 'configs/nas-benchmark/cifar-split.txt'
train_split, valid_split = cifar_split.train, cifar_split.valid cifar_split = load_config(split_Fpath, None, None)
logger.log('Load split file from {:}'.format(split_Fpath)) train_split, valid_split = cifar_split.train, cifar_split.valid
config_path = 'configs/nas-benchmark/algos/R-EA.config' logger.log('Load split file from {:}'.format(split_Fpath))
config = load_config(config_path, {'class_num': class_num, 'xshape': xshape}, logger) config_path = 'configs/nas-benchmark/algos/R-EA.config'
# To split data config = load_config(config_path, {'class_num': class_num, 'xshape': xshape}, logger)
train_data_v2 = deepcopy(train_data) # To split data
train_data_v2.transform = valid_data.transform train_data_v2 = deepcopy(train_data)
valid_data = train_data_v2 train_data_v2.transform = valid_data.transform
search_data = SearchDataset(xargs.dataset, train_data, train_split, valid_split) valid_data = train_data_v2
# data loader search_data = SearchDataset(xargs.dataset, train_data, train_split, valid_split)
train_loader = torch.utils.data.DataLoader(train_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(train_split) , num_workers=xargs.workers, pin_memory=True) # data loader
valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), num_workers=xargs.workers, pin_memory=True) train_loader = torch.utils.data.DataLoader(train_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(train_split) , num_workers=xargs.workers, pin_memory=True)
logger.log('||||||| {:10s} ||||||| Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(xargs.dataset, len(train_loader), len(valid_loader), config.batch_size)) valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), num_workers=xargs.workers, pin_memory=True)
logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config)) logger.log('||||||| {:10s} ||||||| Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(xargs.dataset, len(train_loader), len(valid_loader), config.batch_size))
extra_info = {'config': config, 'train_loader': train_loader, 'valid_loader': valid_loader} logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config))
extra_info = {'config': config, 'train_loader': train_loader, 'valid_loader': valid_loader}
else:
config_path = 'configs/nas-benchmark/algos/R-EA.config'
config = load_config(config_path, None, logger)
logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config))
extra_info = {'config': config, 'train_loader': None, 'valid_loader': None}
search_space = get_search_spaces('cell', xargs.search_space_name) search_space = get_search_spaces('cell', xargs.search_space_name)
random_arch = random_architecture_func(xargs.max_nodes, search_space) random_arch = random_architecture_func(xargs.max_nodes, search_space)

View File

@ -99,24 +99,31 @@ def main(xargs, nas_bench):
logger = prepare_logger(args) logger = prepare_logger(args)
assert xargs.dataset == 'cifar10', 'currently only support CIFAR-10' assert xargs.dataset == 'cifar10', 'currently only support CIFAR-10'
train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1) if xargs.data_path is not None:
split_Fpath = 'configs/nas-benchmark/cifar-split.txt' train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1)
cifar_split = load_config(split_Fpath, None, None) split_Fpath = 'configs/nas-benchmark/cifar-split.txt'
train_split, valid_split = cifar_split.train, cifar_split.valid cifar_split = load_config(split_Fpath, None, None)
logger.log('Load split file from {:}'.format(split_Fpath)) train_split, valid_split = cifar_split.train, cifar_split.valid
config_path = 'configs/nas-benchmark/algos/R-EA.config' logger.log('Load split file from {:}'.format(split_Fpath))
config = load_config(config_path, {'class_num': class_num, 'xshape': xshape}, logger) config_path = 'configs/nas-benchmark/algos/R-EA.config'
# To split data config = load_config(config_path, {'class_num': class_num, 'xshape': xshape}, logger)
train_data_v2 = deepcopy(train_data) # To split data
train_data_v2.transform = valid_data.transform train_data_v2 = deepcopy(train_data)
valid_data = train_data_v2 train_data_v2.transform = valid_data.transform
search_data = SearchDataset(xargs.dataset, train_data, train_split, valid_split) valid_data = train_data_v2
# data loader search_data = SearchDataset(xargs.dataset, train_data, train_split, valid_split)
train_loader = torch.utils.data.DataLoader(train_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(train_split) , num_workers=xargs.workers, pin_memory=True) # data loader
valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), num_workers=xargs.workers, pin_memory=True) train_loader = torch.utils.data.DataLoader(train_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(train_split) , num_workers=xargs.workers, pin_memory=True)
logger.log('||||||| {:10s} ||||||| Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(xargs.dataset, len(train_loader), len(valid_loader), config.batch_size)) valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), num_workers=xargs.workers, pin_memory=True)
logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config)) logger.log('||||||| {:10s} ||||||| Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(xargs.dataset, len(train_loader), len(valid_loader), config.batch_size))
extra_info = {'config': config, 'train_loader': train_loader, 'valid_loader': valid_loader} logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config))
extra_info = {'config': config, 'train_loader': train_loader, 'valid_loader': valid_loader}
else:
config_path = 'configs/nas-benchmark/algos/R-EA.config'
config = load_config(config_path, None, logger)
extra_info = {'config': config, 'train_loader': None, 'valid_loader': None}
logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config))
search_space = get_search_spaces('cell', xargs.search_space_name) search_space = get_search_spaces('cell', xargs.search_space_name)
policy = Policy(xargs.max_nodes, search_space) policy = Policy(xargs.max_nodes, search_space)

View File

@ -74,15 +74,22 @@ class Structure:
nodes[i+1] = sum(sums) > 0 nodes[i+1] = sum(sums) > 0
return nodes[len(self.nodes)] return nodes[len(self.nodes)]
def to_unique_str(self): def to_unique_str(self, consider_zero=False):
# this is used to identify the isomorphic cell, which rerquires the prior knowledge of operation # this is used to identify the isomorphic cell, which rerquires the prior knowledge of operation
# two operations are special, i.e., none and skip_connect # two operations are special, i.e., none and skip_connect
nodes = {0: '0'} nodes = {0: '0'}
for i_node, node_info in enumerate(self.nodes): for i_node, node_info in enumerate(self.nodes):
cur_node = [] cur_node = []
for op, xin in node_info: for op, xin in node_info:
if op == 'skip_connect': x = nodes[xin] if consider_zero is None:
else: x = '('+nodes[xin]+')' + '@{:}'.format(op) x = '('+nodes[xin]+')' + '@{:}'.format(op)
elif consider_zero:
if op == 'none' or nodes[xin] == '#': x = '#' # zero
elif op == 'skip_connect': x = nodes[xin]
else: x = '('+nodes[xin]+')' + '@{:}'.format(op)
else:
if op == 'skip_connect': x = nodes[xin]
else: x = '('+nodes[xin]+')' + '@{:}'.format(op)
cur_node.append(x) cur_node.append(x)
nodes[i_node+1] = '+'.join( sorted(cur_node) ) nodes[i_node+1] = '+'.join( sorted(cur_node) )
return nodes[ len(self.nodes) ] return nodes[ len(self.nodes) ]

View File

@ -41,8 +41,9 @@ class NASBench102API(object):
if verbose: print('try to create the NAS-Bench-102 api from {:}'.format(file_path_or_dict)) if verbose: print('try to create the NAS-Bench-102 api from {:}'.format(file_path_or_dict))
assert os.path.isfile(file_path_or_dict), 'invalid path : {:}'.format(file_path_or_dict) assert os.path.isfile(file_path_or_dict), 'invalid path : {:}'.format(file_path_or_dict)
file_path_or_dict = torch.load(file_path_or_dict) file_path_or_dict = torch.load(file_path_or_dict)
else: elif isinstance(file_path_or_dict, dict):
file_path_or_dict = copy.deepcopy( file_path_or_dict ) file_path_or_dict = copy.deepcopy( file_path_or_dict )
else: raise ValueError('invalid type : {:} not in [str, dict]'.format(type(file_path_or_dict)))
assert isinstance(file_path_or_dict, dict), 'It should be a dict instead of {:}'.format(type(file_path_or_dict)) assert isinstance(file_path_or_dict, dict), 'It should be a dict instead of {:}'.format(type(file_path_or_dict))
keys = ('meta_archs', 'arch2infos', 'evaluated_indexes') keys = ('meta_archs', 'arch2infos', 'evaluated_indexes')
for key in keys: assert key in file_path_or_dict, 'Can not find key[{:}] in the dict'.format(key) for key in keys: assert key in file_path_or_dict, 'Can not find key[{:}] in the dict'.format(key)
@ -152,26 +153,40 @@ class NASBench102API(object):
archresult = arch2infos[index] archresult = arch2infos[index]
return archresult.get_net_param(dataset, seed) return archresult.get_net_param(dataset, seed)
def get_more_info(self, index, dataset, iepoch=None, use_12epochs_result=False): # obtain the metric for the `index`-th architecture
def get_more_info(self, index, dataset, iepoch=None, use_12epochs_result=False, is_random=True):
if use_12epochs_result: basestr, arch2infos = '12epochs' , self.arch2infos_less if use_12epochs_result: basestr, arch2infos = '12epochs' , self.arch2infos_less
else : basestr, arch2infos = '200epochs', self.arch2infos_full else : basestr, arch2infos = '200epochs', self.arch2infos_full
archresult = arch2infos[index] archresult = arch2infos[index]
if dataset == 'cifar10-valid': if dataset == 'cifar10-valid':
train_info = archresult.get_metrics(dataset, 'train' , iepoch=iepoch, is_random=True) train_info = archresult.get_metrics(dataset, 'train' , iepoch=iepoch, is_random=is_random)
valid_info = archresult.get_metrics(dataset, 'x-valid' , iepoch=iepoch, is_random=True) valid_info = archresult.get_metrics(dataset, 'x-valid' , iepoch=iepoch, is_random=is_random)
test__info = archresult.get_metrics(dataset, 'ori-test', iepoch=iepoch, is_random=True) try:
test__info = archresult.get_metrics(dataset, 'ori-test', iepoch=iepoch, is_random=is_random)
except:
test__info = None
total = train_info['iepoch'] + 1 total = train_info['iepoch'] + 1
return {'train-loss' : train_info['loss'], xifo = {'train-loss' : train_info['loss'],
'train-accuracy': train_info['accuracy'], 'train-accuracy': train_info['accuracy'],
'train-all-time': train_info['all_time'], 'train-all-time': train_info['all_time'],
'valid-loss' : valid_info['loss'], 'valid-loss' : valid_info['loss'],
'valid-accuracy': valid_info['accuracy'], 'valid-accuracy': valid_info['accuracy'],
'valid-all-time': valid_info['all_time'], 'valid-all-time': valid_info['all_time'],
'valid-per-time': valid_info['all_time'] / total, 'valid-per-time': None if valid_info['all_time'] is None else valid_info['all_time'] / total}
if test__info is not None:
xifo['test-loss'] = test__info['loss']
xifo['test-accuracy'] = test__info['accuracy']
return xifo
else:
train_info = archresult.get_metrics(dataset, 'train' , iepoch=iepoch, is_random=is_random)
if dataset == 'cifar10':
test__info = archresult.get_metrics(dataset, 'ori-test', iepoch=iepoch, is_random=is_random)
else:
test__info = archresult.get_metrics(dataset, 'x-test', iepoch=iepoch, is_random=is_random)
return {'train-loss' : train_info['loss'],
'train-accuracy': train_info['accuracy'],
'test-loss' : test__info['loss'], 'test-loss' : test__info['loss'],
'test-accuracy' : test__info['accuracy']} 'test-accuracy' : test__info['accuracy']}
else:
raise ValueError('coming soon...')
def show(self, index=-1): def show(self, index=-1):
if index < 0: # show all architectures if index < 0: # show all architectures
@ -369,7 +384,7 @@ class ResultsCount(object):
def update_latency(self, latency): def update_latency(self, latency):
self.latency = copy.deepcopy( latency ) self.latency = copy.deepcopy( latency )
def update_eval(self, accs, losses, times): # old version def update_eval(self, accs, losses, times): # new version
data_names = set([x.split('@')[0] for x in accs.keys()]) data_names = set([x.split('@')[0] for x in accs.keys()])
for data_name in data_names: for data_name in data_names:
assert data_name not in self.eval_names, '{:} has already been added into eval-names'.format(data_name) assert data_name not in self.eval_names, '{:} has already been added into eval-names'.format(data_name)

View File

@ -21,17 +21,11 @@ num_cells=5
max_nodes=4 max_nodes=4
space=nas-bench-102 space=nas-bench-102
if [ "$dataset" == "cifar10" ] || [ "$dataset" == "cifar100" ]; then
data_path="$TORCH_HOME/cifar.python"
else
data_path="$TORCH_HOME/cifar.python/ImageNet16"
fi
save_dir=./output/search-cell-${space}/BOHB-${dataset} save_dir=./output/search-cell-${space}/BOHB-${dataset}
OMP_NUM_THREADS=4 python ./exps/algos/BOHB.py \ OMP_NUM_THREADS=4 python ./exps/algos/BOHB.py \
--save_dir ${save_dir} --max_nodes ${max_nodes} --channel ${channel} --num_cells ${num_cells} \ --save_dir ${save_dir} --max_nodes ${max_nodes} --channel ${channel} --num_cells ${num_cells} \
--dataset ${dataset} --data_path ${data_path} \ --dataset ${dataset} \
--search_space_name ${space} \ --search_space_name ${space} \
--arch_nas_dataset ${TORCH_HOME}/NAS-Bench-102-v1_0-e61699.pth \ --arch_nas_dataset ${TORCH_HOME}/NAS-Bench-102-v1_0-e61699.pth \
--time_budget 12000 \ --time_budget 12000 \

View File

@ -22,17 +22,11 @@ num_cells=5
max_nodes=4 max_nodes=4
space=nas-bench-102 space=nas-bench-102
if [ "$dataset" == "cifar10" ] || [ "$dataset" == "cifar100" ]; then
data_path="$TORCH_HOME/cifar.python"
else
data_path="$TORCH_HOME/cifar.python/ImageNet16"
fi
save_dir=./output/search-cell-${space}/R-EA-${dataset} save_dir=./output/search-cell-${space}/R-EA-${dataset}
OMP_NUM_THREADS=4 python ./exps/algos/R_EA.py \ OMP_NUM_THREADS=4 python ./exps/algos/R_EA.py \
--save_dir ${save_dir} --max_nodes ${max_nodes} --channel ${channel} --num_cells ${num_cells} \ --save_dir ${save_dir} --max_nodes ${max_nodes} --channel ${channel} --num_cells ${num_cells} \
--dataset ${dataset} --data_path ${data_path} \ --dataset ${dataset} \
--search_space_name ${space} \ --search_space_name ${space} \
--arch_nas_dataset ${TORCH_HOME}/NAS-Bench-102-v1_0-e61699.pth \ --arch_nas_dataset ${TORCH_HOME}/NAS-Bench-102-v1_0-e61699.pth \
--time_budget 12000 \ --time_budget 12000 \

View File

@ -21,17 +21,11 @@ num_cells=5
max_nodes=4 max_nodes=4
space=nas-bench-102 space=nas-bench-102
if [ "$dataset" == "cifar10" ] || [ "$dataset" == "cifar100" ]; then
data_path="$TORCH_HOME/cifar.python"
else
data_path="$TORCH_HOME/cifar.python/ImageNet16"
fi
save_dir=./output/search-cell-${space}/REINFORCE-${dataset} save_dir=./output/search-cell-${space}/REINFORCE-${dataset}
OMP_NUM_THREADS=4 python ./exps/algos/reinforce.py \ OMP_NUM_THREADS=4 python ./exps/algos/reinforce.py \
--save_dir ${save_dir} --max_nodes ${max_nodes} --channel ${channel} --num_cells ${num_cells} \ --save_dir ${save_dir} --max_nodes ${max_nodes} --channel ${channel} --num_cells ${num_cells} \
--dataset ${dataset} --data_path ${data_path} \ --dataset ${dataset} \
--search_space_name ${space} \ --search_space_name ${space} \
--arch_nas_dataset ${TORCH_HOME}/NAS-Bench-102-v1_0-e61699.pth \ --arch_nas_dataset ${TORCH_HOME}/NAS-Bench-102-v1_0-e61699.pth \
--time_budget 12000 \ --time_budget 12000 \

View File

@ -21,17 +21,11 @@ num_cells=5
max_nodes=4 max_nodes=4
space=nas-bench-102 space=nas-bench-102
if [ "$dataset" == "cifar10" ] || [ "$dataset" == "cifar100" ]; then
data_path="$TORCH_HOME/cifar.python"
else
data_path="$TORCH_HOME/cifar.python/ImageNet16"
fi
save_dir=./output/search-cell-${space}/RAND-${dataset} save_dir=./output/search-cell-${space}/RAND-${dataset}
OMP_NUM_THREADS=4 python ./exps/algos/RANDOM.py \ OMP_NUM_THREADS=4 python ./exps/algos/RANDOM.py \
--save_dir ${save_dir} --max_nodes ${max_nodes} --channel ${channel} --num_cells ${num_cells} \ --save_dir ${save_dir} --max_nodes ${max_nodes} --channel ${channel} --num_cells ${num_cells} \
--dataset ${dataset} --data_path ${data_path} \ --dataset ${dataset} \
--search_space_name ${space} \ --search_space_name ${space} \
--arch_nas_dataset ${TORCH_HOME}/NAS-Bench-102-v1_0-e61699.pth \ --arch_nas_dataset ${TORCH_HOME}/NAS-Bench-102-v1_0-e61699.pth \
--time_budget 12000 \ --time_budget 12000 \