Add more functions for synthetic env
This commit is contained in:
parent
c925cf1969
commit
a2b1d0d227
230
exps/LFNA/lfna.py
Normal file
230
exps/LFNA/lfna.py
Normal file
@ -0,0 +1,230 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
|
||||
#####################################################
|
||||
# python exps/LFNA/lfna.py --env_version v1 --hidden_dim 16 --layer_dim 32 --epochs 50000
|
||||
#####################################################
|
||||
import sys, time, copy, torch, random, argparse
|
||||
from tqdm import tqdm
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
|
||||
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
|
||||
if str(lib_dir) not in sys.path:
|
||||
sys.path.insert(0, str(lib_dir))
|
||||
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint
|
||||
from log_utils import time_string
|
||||
from log_utils import AverageMeter, convert_secs2time
|
||||
|
||||
from utils import split_str2indexes
|
||||
|
||||
from procedures.advanced_main import basic_train_fn, basic_eval_fn
|
||||
from procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric
|
||||
from datasets.synthetic_core import get_synthetic_env
|
||||
from models.xcore import get_model
|
||||
from xlayers import super_core, trunc_normal_
|
||||
|
||||
|
||||
from lfna_utils import lfna_setup, train_model, TimeData
|
||||
|
||||
from lfna_models_v2 import HyperNet
|
||||
|
||||
|
||||
def main(args):
|
||||
logger, env_info, model_kwargs = lfna_setup(args)
|
||||
dynamic_env = env_info["dynamic_env"]
|
||||
model = get_model(**model_kwargs)
|
||||
model = model.to(args.device)
|
||||
criterion = torch.nn.MSELoss()
|
||||
|
||||
logger.log("There are {:} weights.".format(model.get_w_container().numel()))
|
||||
# meta_train_range = (dynamic_env.min_timestamp, (dynamic_env.min_timestamp + dynamic_env.max_timestamp) / 2)
|
||||
# meta_train_interval = dynamic_env.timestamp_interval
|
||||
|
||||
shape_container = model.get_w_container().to_shape_container()
|
||||
|
||||
# pre-train the hypernetwork
|
||||
timestamps = list(
|
||||
dynamic_env.get_timestamp(index) for index in range(len(dynamic_env) // 2)
|
||||
)
|
||||
|
||||
hypernet = HyperNet(shape_container, args.layer_dim, args.task_dim, timestamps)
|
||||
hypernet = hypernet.to(args.device)
|
||||
|
||||
import pdb
|
||||
|
||||
pdb.set_trace()
|
||||
|
||||
# task_embed = torch.nn.Parameter(torch.Tensor(env_info["total"], args.task_dim))
|
||||
total_bar = 16
|
||||
task_embeds = []
|
||||
for i in range(total_bar):
|
||||
tensor = torch.Tensor(1, args.task_dim).to(args.device)
|
||||
task_embeds.append(torch.nn.Parameter(tensor))
|
||||
for task_embed in task_embeds:
|
||||
trunc_normal_(task_embed, std=0.02)
|
||||
|
||||
model.train()
|
||||
hypernet.train()
|
||||
|
||||
parameters = list(hypernet.parameters()) + task_embeds
|
||||
# optimizer = torch.optim.Adam(parameters, lr=args.init_lr, amsgrad=True)
|
||||
optimizer = torch.optim.Adam(parameters, lr=args.init_lr, weight_decay=1e-5)
|
||||
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
|
||||
optimizer,
|
||||
milestones=[
|
||||
int(args.epochs * 0.8),
|
||||
int(args.epochs * 0.9),
|
||||
],
|
||||
gamma=0.1,
|
||||
)
|
||||
|
||||
# total_bar = env_info["total"] - 1
|
||||
# LFNA meta-training
|
||||
loss_meter = AverageMeter()
|
||||
per_epoch_time, start_time = AverageMeter(), time.time()
|
||||
for iepoch in range(args.epochs):
|
||||
|
||||
need_time = "Time Left: {:}".format(
|
||||
convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True)
|
||||
)
|
||||
head_str = (
|
||||
"[{:}] [{:04d}/{:04d}] ".format(time_string(), iepoch, args.epochs)
|
||||
+ need_time
|
||||
)
|
||||
|
||||
losses = []
|
||||
# for ibatch in range(args.meta_batch):
|
||||
for cur_time in range(total_bar):
|
||||
# cur_time = random.randint(0, total_bar)
|
||||
cur_task_embed = task_embeds[cur_time]
|
||||
cur_container = hypernet(cur_task_embed)
|
||||
cur_x = env_info["{:}-x".format(cur_time)].to(args.device)
|
||||
cur_y = env_info["{:}-y".format(cur_time)].to(args.device)
|
||||
cur_dataset = TimeData(cur_time, cur_x, cur_y)
|
||||
|
||||
preds = model.forward_with_container(cur_dataset.x, cur_container)
|
||||
optimizer.zero_grad()
|
||||
loss = criterion(preds, cur_dataset.y)
|
||||
|
||||
losses.append(loss)
|
||||
|
||||
final_loss = torch.stack(losses).mean()
|
||||
final_loss.backward()
|
||||
optimizer.step()
|
||||
lr_scheduler.step()
|
||||
|
||||
loss_meter.update(final_loss.item())
|
||||
if iepoch % 100 == 0:
|
||||
logger.log(
|
||||
head_str
|
||||
+ " meta-loss: {:.4f} ({:.4f}) :: lr={:.5f}, batch={:}".format(
|
||||
loss_meter.avg,
|
||||
loss_meter.val,
|
||||
min(lr_scheduler.get_last_lr()),
|
||||
len(losses),
|
||||
)
|
||||
)
|
||||
|
||||
save_checkpoint(
|
||||
{
|
||||
"hypernet": hypernet.state_dict(),
|
||||
"task_embed": task_embed,
|
||||
"lr_scheduler": lr_scheduler.state_dict(),
|
||||
"iepoch": iepoch,
|
||||
},
|
||||
logger.path("model"),
|
||||
logger,
|
||||
)
|
||||
loss_meter.reset()
|
||||
per_epoch_time.update(time.time() - start_time)
|
||||
start_time = time.time()
|
||||
|
||||
print(model)
|
||||
print(hypernet)
|
||||
|
||||
w_container_per_epoch = dict()
|
||||
for idx in range(0, total_bar):
|
||||
future_time = env_info["{:}-timestamp".format(idx)]
|
||||
future_x = env_info["{:}-x".format(idx)]
|
||||
future_y = env_info["{:}-y".format(idx)]
|
||||
future_container = hypernet(task_embeds[idx])
|
||||
w_container_per_epoch[idx] = future_container.no_grad_clone()
|
||||
with torch.no_grad():
|
||||
future_y_hat = model.forward_with_container(
|
||||
future_x, w_container_per_epoch[idx]
|
||||
)
|
||||
future_loss = criterion(future_y_hat, future_y)
|
||||
logger.log("meta-test: [{:03d}] -> loss={:.4f}".format(idx, future_loss.item()))
|
||||
|
||||
save_checkpoint(
|
||||
{"w_container_per_epoch": w_container_per_epoch},
|
||||
logger.path(None) / "final-ckp.pth",
|
||||
logger,
|
||||
)
|
||||
|
||||
logger.log("-" * 200 + "\n")
|
||||
logger.close()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(".")
|
||||
parser.add_argument(
|
||||
"--save_dir",
|
||||
type=str,
|
||||
default="./outputs/lfna-synthetic/lfna-battle",
|
||||
help="The checkpoint directory.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--env_version",
|
||||
type=str,
|
||||
required=True,
|
||||
help="The synthetic enviornment version.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--hidden_dim",
|
||||
type=int,
|
||||
required=True,
|
||||
help="The hidden dimension.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--layer_dim",
|
||||
type=int,
|
||||
required=True,
|
||||
help="The hidden dimension.",
|
||||
)
|
||||
#####
|
||||
parser.add_argument(
|
||||
"--init_lr",
|
||||
type=float,
|
||||
default=0.1,
|
||||
help="The initial learning rate for the optimizer (default is Adam)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--meta_batch",
|
||||
type=int,
|
||||
default=64,
|
||||
help="The batch size for the meta-model",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--epochs",
|
||||
type=int,
|
||||
default=2000,
|
||||
help="The total number of epochs.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--device",
|
||||
type=str,
|
||||
default="cpu",
|
||||
help="",
|
||||
)
|
||||
# Random Seed
|
||||
parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")
|
||||
args = parser.parse_args()
|
||||
if args.rand_seed is None or args.rand_seed < 0:
|
||||
args.rand_seed = random.randint(1, 100000)
|
||||
assert args.save_dir is not None, "The save dir argument can not be None"
|
||||
args.task_dim = args.layer_dim
|
||||
args.save_dir = "{:}-{:}-d{:}".format(
|
||||
args.save_dir, args.env_version, args.hidden_dim
|
||||
)
|
||||
main(args)
|
72
exps/LFNA/lfna_models_v2.py
Normal file
72
exps/LFNA/lfna_models_v2.py
Normal file
@ -0,0 +1,72 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
|
||||
#####################################################
|
||||
import copy
|
||||
import torch
|
||||
|
||||
import torch.nn.functional as F
|
||||
|
||||
from xlayers import super_core
|
||||
from xlayers import trunc_normal_
|
||||
from models.xcore import get_model
|
||||
|
||||
|
||||
class HyperNet(super_core.SuperModule):
|
||||
"""The hyper-network."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
shape_container,
|
||||
layer_embeding,
|
||||
task_embedding,
|
||||
meta_timestamps,
|
||||
return_container: bool = True,
|
||||
):
|
||||
super(HyperNet, self).__init__()
|
||||
self._shape_container = shape_container
|
||||
self._num_layers = len(shape_container)
|
||||
self._numel_per_layer = []
|
||||
for ilayer in range(self._num_layers):
|
||||
self._numel_per_layer.append(shape_container[ilayer].numel())
|
||||
|
||||
self.register_parameter(
|
||||
"_super_layer_embed",
|
||||
torch.nn.Parameter(torch.Tensor(self._num_layers, layer_embeding)),
|
||||
)
|
||||
trunc_normal_(self._super_layer_embed, std=0.02)
|
||||
|
||||
model_kwargs = dict(
|
||||
config=dict(model_type="dual_norm_mlp"),
|
||||
input_dim=layer_embeding + task_embedding,
|
||||
output_dim=max(self._numel_per_layer),
|
||||
hidden_dims=[layer_embeding * 4] * 3,
|
||||
act_cls="gelu",
|
||||
norm_cls="layer_norm_1d",
|
||||
dropout=0.1,
|
||||
)
|
||||
import pdb
|
||||
|
||||
pdb.set_trace()
|
||||
self._generator = get_model(**model_kwargs)
|
||||
self._return_container = return_container
|
||||
print("generator: {:}".format(self._generator))
|
||||
|
||||
def forward_raw(self, task_embed):
|
||||
# task_embed = F.normalize(task_embed, dim=-1, p=2)
|
||||
# layer_embed = F.normalize(self._super_layer_embed, dim=-1, p=2)
|
||||
layer_embed = self._super_layer_embed
|
||||
task_embed = task_embed.view(1, -1).expand(self._num_layers, -1)
|
||||
|
||||
joint_embed = torch.cat((task_embed, layer_embed), dim=-1)
|
||||
weights = self._generator(joint_embed)
|
||||
if self._return_container:
|
||||
weights = torch.split(weights, 1)
|
||||
return self._shape_container.translate(weights)
|
||||
else:
|
||||
return weights
|
||||
|
||||
def forward_candidate(self, input):
|
||||
raise NotImplementedError
|
||||
|
||||
def extra_repr(self) -> str:
|
||||
return "(_super_layer_embed): {:}".format(list(self._super_layer_embed.shape))
|
@ -55,6 +55,10 @@ class SyntheticDEnv(data.Dataset):
|
||||
def timestamp_interval(self):
|
||||
return self._timestamp_generator.interval
|
||||
|
||||
def get_timestamp(self, index):
|
||||
index, timestamp = self._timestamp_generator[index]
|
||||
return timestamp
|
||||
|
||||
def set_oracle_map(self, functor):
|
||||
self._oracle_map = functor
|
||||
|
||||
|
@ -60,7 +60,7 @@ class TimeStamp(UnifiedSplit, data.Dataset):
|
||||
@property
|
||||
def max_timestamp(self):
|
||||
return self._max_timestamp
|
||||
|
||||
|
||||
@property
|
||||
def interval(self):
|
||||
return self._interval
|
||||
|
Loading…
Reference in New Issue
Block a user