Add more functions for synthetic env
This commit is contained in:
		
							
								
								
									
										230
									
								
								exps/LFNA/lfna.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										230
									
								
								exps/LFNA/lfna.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,230 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # | ||||
| ##################################################### | ||||
| # python exps/LFNA/lfna.py --env_version v1 --hidden_dim 16 --layer_dim 32 --epochs 50000 | ||||
| ##################################################### | ||||
| import sys, time, copy, torch, random, argparse | ||||
| from tqdm import tqdm | ||||
| from copy import deepcopy | ||||
| from pathlib import Path | ||||
|  | ||||
| lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve() | ||||
| if str(lib_dir) not in sys.path: | ||||
|     sys.path.insert(0, str(lib_dir)) | ||||
| from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint | ||||
| from log_utils import time_string | ||||
| from log_utils import AverageMeter, convert_secs2time | ||||
|  | ||||
| from utils import split_str2indexes | ||||
|  | ||||
| from procedures.advanced_main import basic_train_fn, basic_eval_fn | ||||
| from procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric | ||||
| from datasets.synthetic_core import get_synthetic_env | ||||
| from models.xcore import get_model | ||||
| from xlayers import super_core, trunc_normal_ | ||||
|  | ||||
|  | ||||
| from lfna_utils import lfna_setup, train_model, TimeData | ||||
|  | ||||
| from lfna_models_v2 import HyperNet | ||||
|  | ||||
|  | ||||
| def main(args): | ||||
|     logger, env_info, model_kwargs = lfna_setup(args) | ||||
|     dynamic_env = env_info["dynamic_env"] | ||||
|     model = get_model(**model_kwargs) | ||||
|     model = model.to(args.device) | ||||
|     criterion = torch.nn.MSELoss() | ||||
|  | ||||
|     logger.log("There are {:} weights.".format(model.get_w_container().numel())) | ||||
|     # meta_train_range = (dynamic_env.min_timestamp, (dynamic_env.min_timestamp + dynamic_env.max_timestamp) / 2) | ||||
|     # meta_train_interval = dynamic_env.timestamp_interval | ||||
|  | ||||
|     shape_container = model.get_w_container().to_shape_container() | ||||
|  | ||||
|     # pre-train the hypernetwork | ||||
|     timestamps = list( | ||||
|         dynamic_env.get_timestamp(index) for index in range(len(dynamic_env) // 2) | ||||
|     ) | ||||
|  | ||||
|     hypernet = HyperNet(shape_container, args.layer_dim, args.task_dim, timestamps) | ||||
|     hypernet = hypernet.to(args.device) | ||||
|  | ||||
|     import pdb | ||||
|  | ||||
|     pdb.set_trace() | ||||
|  | ||||
|     # task_embed = torch.nn.Parameter(torch.Tensor(env_info["total"], args.task_dim)) | ||||
|     total_bar = 16 | ||||
|     task_embeds = [] | ||||
|     for i in range(total_bar): | ||||
|         tensor = torch.Tensor(1, args.task_dim).to(args.device) | ||||
|         task_embeds.append(torch.nn.Parameter(tensor)) | ||||
|     for task_embed in task_embeds: | ||||
|         trunc_normal_(task_embed, std=0.02) | ||||
|  | ||||
|     model.train() | ||||
|     hypernet.train() | ||||
|  | ||||
|     parameters = list(hypernet.parameters()) + task_embeds | ||||
|     # optimizer = torch.optim.Adam(parameters, lr=args.init_lr, amsgrad=True) | ||||
|     optimizer = torch.optim.Adam(parameters, lr=args.init_lr, weight_decay=1e-5) | ||||
|     lr_scheduler = torch.optim.lr_scheduler.MultiStepLR( | ||||
|         optimizer, | ||||
|         milestones=[ | ||||
|             int(args.epochs * 0.8), | ||||
|             int(args.epochs * 0.9), | ||||
|         ], | ||||
|         gamma=0.1, | ||||
|     ) | ||||
|  | ||||
|     # total_bar = env_info["total"] - 1 | ||||
|     # LFNA meta-training | ||||
|     loss_meter = AverageMeter() | ||||
|     per_epoch_time, start_time = AverageMeter(), time.time() | ||||
|     for iepoch in range(args.epochs): | ||||
|  | ||||
|         need_time = "Time Left: {:}".format( | ||||
|             convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True) | ||||
|         ) | ||||
|         head_str = ( | ||||
|             "[{:}] [{:04d}/{:04d}] ".format(time_string(), iepoch, args.epochs) | ||||
|             + need_time | ||||
|         ) | ||||
|  | ||||
|         losses = [] | ||||
|         # for ibatch in range(args.meta_batch): | ||||
|         for cur_time in range(total_bar): | ||||
|             # cur_time = random.randint(0, total_bar) | ||||
|             cur_task_embed = task_embeds[cur_time] | ||||
|             cur_container = hypernet(cur_task_embed) | ||||
|             cur_x = env_info["{:}-x".format(cur_time)].to(args.device) | ||||
|             cur_y = env_info["{:}-y".format(cur_time)].to(args.device) | ||||
|             cur_dataset = TimeData(cur_time, cur_x, cur_y) | ||||
|  | ||||
|             preds = model.forward_with_container(cur_dataset.x, cur_container) | ||||
|             optimizer.zero_grad() | ||||
|             loss = criterion(preds, cur_dataset.y) | ||||
|  | ||||
|             losses.append(loss) | ||||
|  | ||||
|         final_loss = torch.stack(losses).mean() | ||||
|         final_loss.backward() | ||||
|         optimizer.step() | ||||
|         lr_scheduler.step() | ||||
|  | ||||
|         loss_meter.update(final_loss.item()) | ||||
|         if iepoch % 100 == 0: | ||||
|             logger.log( | ||||
|                 head_str | ||||
|                 + " meta-loss: {:.4f} ({:.4f}) :: lr={:.5f}, batch={:}".format( | ||||
|                     loss_meter.avg, | ||||
|                     loss_meter.val, | ||||
|                     min(lr_scheduler.get_last_lr()), | ||||
|                     len(losses), | ||||
|                 ) | ||||
|             ) | ||||
|  | ||||
|             save_checkpoint( | ||||
|                 { | ||||
|                     "hypernet": hypernet.state_dict(), | ||||
|                     "task_embed": task_embed, | ||||
|                     "lr_scheduler": lr_scheduler.state_dict(), | ||||
|                     "iepoch": iepoch, | ||||
|                 }, | ||||
|                 logger.path("model"), | ||||
|                 logger, | ||||
|             ) | ||||
|             loss_meter.reset() | ||||
|         per_epoch_time.update(time.time() - start_time) | ||||
|         start_time = time.time() | ||||
|  | ||||
|     print(model) | ||||
|     print(hypernet) | ||||
|  | ||||
|     w_container_per_epoch = dict() | ||||
|     for idx in range(0, total_bar): | ||||
|         future_time = env_info["{:}-timestamp".format(idx)] | ||||
|         future_x = env_info["{:}-x".format(idx)] | ||||
|         future_y = env_info["{:}-y".format(idx)] | ||||
|         future_container = hypernet(task_embeds[idx]) | ||||
|         w_container_per_epoch[idx] = future_container.no_grad_clone() | ||||
|         with torch.no_grad(): | ||||
|             future_y_hat = model.forward_with_container( | ||||
|                 future_x, w_container_per_epoch[idx] | ||||
|             ) | ||||
|             future_loss = criterion(future_y_hat, future_y) | ||||
|         logger.log("meta-test: [{:03d}] -> loss={:.4f}".format(idx, future_loss.item())) | ||||
|  | ||||
|     save_checkpoint( | ||||
|         {"w_container_per_epoch": w_container_per_epoch}, | ||||
|         logger.path(None) / "final-ckp.pth", | ||||
|         logger, | ||||
|     ) | ||||
|  | ||||
|     logger.log("-" * 200 + "\n") | ||||
|     logger.close() | ||||
|  | ||||
|  | ||||
| if __name__ == "__main__": | ||||
|     parser = argparse.ArgumentParser(".") | ||||
|     parser.add_argument( | ||||
|         "--save_dir", | ||||
|         type=str, | ||||
|         default="./outputs/lfna-synthetic/lfna-battle", | ||||
|         help="The checkpoint directory.", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--env_version", | ||||
|         type=str, | ||||
|         required=True, | ||||
|         help="The synthetic enviornment version.", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--hidden_dim", | ||||
|         type=int, | ||||
|         required=True, | ||||
|         help="The hidden dimension.", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--layer_dim", | ||||
|         type=int, | ||||
|         required=True, | ||||
|         help="The hidden dimension.", | ||||
|     ) | ||||
|     ##### | ||||
|     parser.add_argument( | ||||
|         "--init_lr", | ||||
|         type=float, | ||||
|         default=0.1, | ||||
|         help="The initial learning rate for the optimizer (default is Adam)", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--meta_batch", | ||||
|         type=int, | ||||
|         default=64, | ||||
|         help="The batch size for the meta-model", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--epochs", | ||||
|         type=int, | ||||
|         default=2000, | ||||
|         help="The total number of epochs.", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--device", | ||||
|         type=str, | ||||
|         default="cpu", | ||||
|         help="", | ||||
|     ) | ||||
|     # Random Seed | ||||
|     parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed") | ||||
|     args = parser.parse_args() | ||||
|     if args.rand_seed is None or args.rand_seed < 0: | ||||
|         args.rand_seed = random.randint(1, 100000) | ||||
|     assert args.save_dir is not None, "The save dir argument can not be None" | ||||
|     args.task_dim = args.layer_dim | ||||
|     args.save_dir = "{:}-{:}-d{:}".format( | ||||
|         args.save_dir, args.env_version, args.hidden_dim | ||||
|     ) | ||||
|     main(args) | ||||
							
								
								
									
										72
									
								
								exps/LFNA/lfna_models_v2.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										72
									
								
								exps/LFNA/lfna_models_v2.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,72 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # | ||||
| ##################################################### | ||||
| import copy | ||||
| import torch | ||||
|  | ||||
| import torch.nn.functional as F | ||||
|  | ||||
| from xlayers import super_core | ||||
| from xlayers import trunc_normal_ | ||||
| from models.xcore import get_model | ||||
|  | ||||
|  | ||||
| class HyperNet(super_core.SuperModule): | ||||
|     """The hyper-network.""" | ||||
|  | ||||
|     def __init__( | ||||
|         self, | ||||
|         shape_container, | ||||
|         layer_embeding, | ||||
|         task_embedding, | ||||
|         meta_timestamps, | ||||
|         return_container: bool = True, | ||||
|     ): | ||||
|         super(HyperNet, self).__init__() | ||||
|         self._shape_container = shape_container | ||||
|         self._num_layers = len(shape_container) | ||||
|         self._numel_per_layer = [] | ||||
|         for ilayer in range(self._num_layers): | ||||
|             self._numel_per_layer.append(shape_container[ilayer].numel()) | ||||
|  | ||||
|         self.register_parameter( | ||||
|             "_super_layer_embed", | ||||
|             torch.nn.Parameter(torch.Tensor(self._num_layers, layer_embeding)), | ||||
|         ) | ||||
|         trunc_normal_(self._super_layer_embed, std=0.02) | ||||
|  | ||||
|         model_kwargs = dict( | ||||
|             config=dict(model_type="dual_norm_mlp"), | ||||
|             input_dim=layer_embeding + task_embedding, | ||||
|             output_dim=max(self._numel_per_layer), | ||||
|             hidden_dims=[layer_embeding * 4] * 3, | ||||
|             act_cls="gelu", | ||||
|             norm_cls="layer_norm_1d", | ||||
|             dropout=0.1, | ||||
|         ) | ||||
|         import pdb | ||||
|  | ||||
|         pdb.set_trace() | ||||
|         self._generator = get_model(**model_kwargs) | ||||
|         self._return_container = return_container | ||||
|         print("generator: {:}".format(self._generator)) | ||||
|  | ||||
|     def forward_raw(self, task_embed): | ||||
|         # task_embed = F.normalize(task_embed, dim=-1, p=2) | ||||
|         # layer_embed = F.normalize(self._super_layer_embed, dim=-1, p=2) | ||||
|         layer_embed = self._super_layer_embed | ||||
|         task_embed = task_embed.view(1, -1).expand(self._num_layers, -1) | ||||
|  | ||||
|         joint_embed = torch.cat((task_embed, layer_embed), dim=-1) | ||||
|         weights = self._generator(joint_embed) | ||||
|         if self._return_container: | ||||
|             weights = torch.split(weights, 1) | ||||
|             return self._shape_container.translate(weights) | ||||
|         else: | ||||
|             return weights | ||||
|  | ||||
|     def forward_candidate(self, input): | ||||
|         raise NotImplementedError | ||||
|  | ||||
|     def extra_repr(self) -> str: | ||||
|         return "(_super_layer_embed): {:}".format(list(self._super_layer_embed.shape)) | ||||
| @@ -55,6 +55,10 @@ class SyntheticDEnv(data.Dataset): | ||||
|     def timestamp_interval(self): | ||||
|         return self._timestamp_generator.interval | ||||
|  | ||||
|     def get_timestamp(self, index): | ||||
|         index, timestamp = self._timestamp_generator[index] | ||||
|         return timestamp | ||||
|  | ||||
|     def set_oracle_map(self, functor): | ||||
|         self._oracle_map = functor | ||||
|  | ||||
|   | ||||
| @@ -60,7 +60,7 @@ class TimeStamp(UnifiedSplit, data.Dataset): | ||||
|     @property | ||||
|     def max_timestamp(self): | ||||
|         return self._max_timestamp | ||||
|    | ||||
|  | ||||
|     @property | ||||
|     def interval(self): | ||||
|         return self._interval | ||||
|   | ||||
		Reference in New Issue
	
	Block a user