Start prototype
This commit is contained in:
parent
c3e12956ae
commit
a867ea5209
1
.gitignore
vendored
1
.gitignore
vendored
@ -128,3 +128,4 @@ TEMP-L.sh
|
||||
|
||||
# Visual Studio Code
|
||||
.vscode
|
||||
mlruns
|
||||
|
@ -16,7 +16,7 @@ endif
|
||||
"显示行号
|
||||
"set number
|
||||
""设置缩进有三个取值cindent(c风格)、smartindent(智能模式,其实不觉得有什么智能)、autoindent(简单的与上一行保持一致)
|
||||
set cindent
|
||||
set autoindent
|
||||
"在windows版本中vim的退格键模式默认与vi兼容,与我们的使用习惯不太符合,下边这条可以改过来
|
||||
"set backspace=indent,eol,start
|
||||
""用空格键替换制表符
|
||||
|
@ -1,3 +0,0 @@
|
||||
import os
|
||||
|
||||
print('xxx123')
|
94
exps/trading/workflow_test.py
Normal file
94
exps/trading/workflow_test.py
Normal file
@ -0,0 +1,94 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||||
#####################################################
|
||||
# Refer to:
|
||||
# - https://github.com/microsoft/qlib/blob/main/examples/workflow_by_code.ipynb
|
||||
# - https://github.com/microsoft/qlib/blob/main/examples/workflow_by_code.py
|
||||
# python exps/trading/workflow_test.py
|
||||
#####################################################
|
||||
import sys, site
|
||||
from pathlib import Path
|
||||
|
||||
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
|
||||
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
|
||||
|
||||
import qlib
|
||||
import pandas as pd
|
||||
from qlib.config import REG_CN
|
||||
from qlib.contrib.model.gbdt import LGBModel
|
||||
from qlib.contrib.data.handler import Alpha158
|
||||
from qlib.contrib.strategy.strategy import TopkDropoutStrategy
|
||||
from qlib.contrib.evaluate import (
|
||||
backtest as normal_backtest,
|
||||
risk_analysis,
|
||||
)
|
||||
from qlib.utils import exists_qlib_data, init_instance_by_config
|
||||
from qlib.workflow import R
|
||||
from qlib.workflow.record_temp import SignalRecord, PortAnaRecord
|
||||
from qlib.utils import flatten_dict
|
||||
|
||||
|
||||
# use default data
|
||||
# NOTE: need to download data from remote: python scripts/get_data.py qlib_data_cn --target_dir ~/.qlib/qlib_data/cn_data
|
||||
provider_uri = "~/.qlib/qlib_data/cn_data" # target_dir
|
||||
if not exists_qlib_data(provider_uri):
|
||||
print(f"Qlib data is not found in {provider_uri}")
|
||||
sys.path.append(str(scripts_dir))
|
||||
from get_data import GetData
|
||||
GetData().qlib_data(target_dir=provider_uri, region=REG_CN)
|
||||
qlib.init(provider_uri=provider_uri, region=REG_CN)
|
||||
|
||||
|
||||
market = "csi300"
|
||||
benchmark = "SH000300"
|
||||
|
||||
|
||||
###################################
|
||||
# train model
|
||||
###################################
|
||||
data_handler_config = {
|
||||
"start_time": "2008-01-01",
|
||||
"end_time": "2020-08-01",
|
||||
"fit_start_time": "2008-01-01",
|
||||
"fit_end_time": "2014-12-31",
|
||||
"instruments": market,
|
||||
}
|
||||
|
||||
task = {
|
||||
"model": {
|
||||
"class": "QuantTransformer",
|
||||
"module_path": "trade_models",
|
||||
"kwargs": {
|
||||
"loss": "mse",
|
||||
"GPU": "0",
|
||||
"metric": "loss",
|
||||
},
|
||||
},
|
||||
"dataset": {
|
||||
"class": "DatasetH",
|
||||
"module_path": "qlib.data.dataset",
|
||||
"kwargs": {
|
||||
"handler": {
|
||||
"class": "Alpha158",
|
||||
"module_path": "qlib.contrib.data.handler",
|
||||
"kwargs": data_handler_config,
|
||||
},
|
||||
"segments": {
|
||||
"train": ("2008-01-01", "2014-12-31"),
|
||||
"valid": ("2015-01-01", "2016-12-31"),
|
||||
"test": ("2017-01-01", "2020-08-01"),
|
||||
},
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
# model initiaiton
|
||||
model = init_instance_by_config(task["model"])
|
||||
dataset = init_instance_by_config(task["dataset"])
|
||||
|
||||
# start exp to train model
|
||||
with R.start(experiment_name="train_model"):
|
||||
R.log_params(**flatten_dict(task))
|
||||
model.fit(dataset)
|
||||
R.save_objects(trained_model=model)
|
||||
rid = R.get_recorder().id
|
2
lib/layers/__init__.py
Normal file
2
lib/layers/__init__.py
Normal file
@ -0,0 +1,2 @@
|
||||
from .drop import DropBlock2d, DropPath
|
||||
from .weight_init import trunc_normal_
|
169
lib/layers/drop.py
Normal file
169
lib/layers/drop.py
Normal file
@ -0,0 +1,169 @@
|
||||
""" Borrowed from https://github.com/rwightman/pytorch-image-models
|
||||
DropBlock, DropPath
|
||||
|
||||
PyTorch implementations of DropBlock and DropPath (Stochastic Depth) regularization layers.
|
||||
|
||||
Papers:
|
||||
DropBlock: A regularization method for convolutional networks (https://arxiv.org/abs/1810.12890)
|
||||
|
||||
Deep Networks with Stochastic Depth (https://arxiv.org/abs/1603.09382)
|
||||
|
||||
Code:
|
||||
DropBlock impl inspired by two Tensorflow impl that I liked:
|
||||
- https://github.com/tensorflow/tpu/blob/master/models/official/resnet/resnet_model.py#L74
|
||||
- https://github.com/clovaai/assembled-cnn/blob/master/nets/blocks.py
|
||||
|
||||
Hacked together by / Copyright 2020 Ross Wightman
|
||||
"""
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
def drop_block_2d(
|
||||
x, drop_prob: float = 0.1, block_size: int = 7, gamma_scale: float = 1.0,
|
||||
with_noise: bool = False, inplace: bool = False, batchwise: bool = False):
|
||||
""" DropBlock. See https://arxiv.org/pdf/1810.12890.pdf
|
||||
|
||||
DropBlock with an experimental gaussian noise option. This layer has been tested on a few training
|
||||
runs with success, but needs further validation and possibly optimization for lower runtime impact.
|
||||
"""
|
||||
B, C, H, W = x.shape
|
||||
total_size = W * H
|
||||
clipped_block_size = min(block_size, min(W, H))
|
||||
# seed_drop_rate, the gamma parameter
|
||||
gamma = gamma_scale * drop_prob * total_size / clipped_block_size ** 2 / (
|
||||
(W - block_size + 1) * (H - block_size + 1))
|
||||
|
||||
# Forces the block to be inside the feature map.
|
||||
w_i, h_i = torch.meshgrid(torch.arange(W).to(x.device), torch.arange(H).to(x.device))
|
||||
valid_block = ((w_i >= clipped_block_size // 2) & (w_i < W - (clipped_block_size - 1) // 2)) & \
|
||||
((h_i >= clipped_block_size // 2) & (h_i < H - (clipped_block_size - 1) // 2))
|
||||
valid_block = torch.reshape(valid_block, (1, 1, H, W)).to(dtype=x.dtype)
|
||||
|
||||
if batchwise:
|
||||
# one mask for whole batch, quite a bit faster
|
||||
uniform_noise = torch.rand((1, C, H, W), dtype=x.dtype, device=x.device)
|
||||
else:
|
||||
uniform_noise = torch.rand_like(x)
|
||||
block_mask = ((2 - gamma - valid_block + uniform_noise) >= 1).to(dtype=x.dtype)
|
||||
block_mask = -F.max_pool2d(
|
||||
-block_mask,
|
||||
kernel_size=clipped_block_size, # block_size,
|
||||
stride=1,
|
||||
padding=clipped_block_size // 2)
|
||||
|
||||
if with_noise:
|
||||
normal_noise = torch.randn((1, C, H, W), dtype=x.dtype, device=x.device) if batchwise else torch.randn_like(x)
|
||||
if inplace:
|
||||
x.mul_(block_mask).add_(normal_noise * (1 - block_mask))
|
||||
else:
|
||||
x = x * block_mask + normal_noise * (1 - block_mask)
|
||||
else:
|
||||
normalize_scale = (block_mask.numel() / block_mask.to(dtype=torch.float32).sum().add(1e-7)).to(x.dtype)
|
||||
if inplace:
|
||||
x.mul_(block_mask * normalize_scale)
|
||||
else:
|
||||
x = x * block_mask * normalize_scale
|
||||
return x
|
||||
|
||||
|
||||
def drop_block_fast_2d(
|
||||
x: torch.Tensor, drop_prob: float = 0.1, block_size: int = 7,
|
||||
gamma_scale: float = 1.0, with_noise: bool = False, inplace: bool = False, batchwise: bool = False):
|
||||
""" DropBlock. See https://arxiv.org/pdf/1810.12890.pdf
|
||||
|
||||
DropBlock with an experimental gaussian noise option. Simplied from above without concern for valid
|
||||
block mask at edges.
|
||||
"""
|
||||
B, C, H, W = x.shape
|
||||
total_size = W * H
|
||||
clipped_block_size = min(block_size, min(W, H))
|
||||
gamma = gamma_scale * drop_prob * total_size / clipped_block_size ** 2 / (
|
||||
(W - block_size + 1) * (H - block_size + 1))
|
||||
|
||||
if batchwise:
|
||||
# one mask for whole batch, quite a bit faster
|
||||
block_mask = torch.rand((1, C, H, W), dtype=x.dtype, device=x.device) < gamma
|
||||
else:
|
||||
# mask per batch element
|
||||
block_mask = torch.rand_like(x) < gamma
|
||||
block_mask = F.max_pool2d(
|
||||
block_mask.to(x.dtype), kernel_size=clipped_block_size, stride=1, padding=clipped_block_size // 2)
|
||||
|
||||
if with_noise:
|
||||
normal_noise = torch.randn((1, C, H, W), dtype=x.dtype, device=x.device) if batchwise else torch.randn_like(x)
|
||||
if inplace:
|
||||
x.mul_(1. - block_mask).add_(normal_noise * block_mask)
|
||||
else:
|
||||
x = x * (1. - block_mask) + normal_noise * block_mask
|
||||
else:
|
||||
block_mask = 1 - block_mask
|
||||
normalize_scale = (block_mask.numel() / block_mask.to(dtype=torch.float32).sum().add(1e-7)).to(dtype=x.dtype)
|
||||
if inplace:
|
||||
x.mul_(block_mask * normalize_scale)
|
||||
else:
|
||||
x = x * block_mask * normalize_scale
|
||||
return x
|
||||
|
||||
|
||||
class DropBlock2d(nn.Module):
|
||||
""" DropBlock. See https://arxiv.org/pdf/1810.12890.pdf
|
||||
"""
|
||||
def __init__(self,
|
||||
drop_prob=0.1,
|
||||
block_size=7,
|
||||
gamma_scale=1.0,
|
||||
with_noise=False,
|
||||
inplace=False,
|
||||
batchwise=False,
|
||||
fast=True):
|
||||
super(DropBlock2d, self).__init__()
|
||||
self.drop_prob = drop_prob
|
||||
self.gamma_scale = gamma_scale
|
||||
self.block_size = block_size
|
||||
self.with_noise = with_noise
|
||||
self.inplace = inplace
|
||||
self.batchwise = batchwise
|
||||
self.fast = fast # FIXME finish comparisons of fast vs not
|
||||
|
||||
def forward(self, x):
|
||||
if not self.training or not self.drop_prob:
|
||||
return x
|
||||
if self.fast:
|
||||
return drop_block_fast_2d(
|
||||
x, self.drop_prob, self.block_size, self.gamma_scale, self.with_noise, self.inplace, self.batchwise)
|
||||
else:
|
||||
return drop_block_2d(
|
||||
x, self.drop_prob, self.block_size, self.gamma_scale, self.with_noise, self.inplace, self.batchwise)
|
||||
|
||||
|
||||
def drop_path(x, drop_prob: float = 0., training: bool = False):
|
||||
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
||||
|
||||
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
|
||||
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
||||
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
|
||||
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
|
||||
'survival rate' as the argument.
|
||||
|
||||
"""
|
||||
if drop_prob == 0. or not training:
|
||||
return x
|
||||
keep_prob = 1 - drop_prob
|
||||
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
||||
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
|
||||
random_tensor.floor_() # binarize
|
||||
output = x.div(keep_prob) * random_tensor
|
||||
return output
|
||||
|
||||
|
||||
class DropPath(nn.Module):
|
||||
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
||||
"""
|
||||
def __init__(self, drop_prob=None):
|
||||
super(DropPath, self).__init__()
|
||||
self.drop_prob = drop_prob
|
||||
|
||||
def forward(self, x):
|
||||
return drop_path(x, self.drop_prob, self.training)
|
61
lib/layers/weight_init.py
Normal file
61
lib/layers/weight_init.py
Normal file
@ -0,0 +1,61 @@
|
||||
# Borrowed from https://github.com/rwightman/pytorch-image-models
|
||||
import torch
|
||||
import math
|
||||
import warnings
|
||||
|
||||
|
||||
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
|
||||
# Cut & paste from PyTorch official master until it's in a few official releases - RW
|
||||
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
|
||||
def norm_cdf(x):
|
||||
# Computes standard normal cumulative distribution function
|
||||
return (1. + math.erf(x / math.sqrt(2.))) / 2.
|
||||
|
||||
if (mean < a - 2 * std) or (mean > b + 2 * std):
|
||||
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
|
||||
"The distribution of values may be incorrect.",
|
||||
stacklevel=2)
|
||||
|
||||
with torch.no_grad():
|
||||
# Values are generated by using a truncated uniform distribution and
|
||||
# then using the inverse CDF for the normal distribution.
|
||||
# Get upper and lower cdf values
|
||||
l = norm_cdf((a - mean) / std)
|
||||
u = norm_cdf((b - mean) / std)
|
||||
|
||||
# Uniformly fill tensor with values from [l, u], then translate to
|
||||
# [2l-1, 2u-1].
|
||||
tensor.uniform_(2 * l - 1, 2 * u - 1)
|
||||
|
||||
# Use inverse cdf transform for normal distribution to get truncated
|
||||
# standard normal
|
||||
tensor.erfinv_()
|
||||
|
||||
# Transform to proper mean, std
|
||||
tensor.mul_(std * math.sqrt(2.))
|
||||
tensor.add_(mean)
|
||||
|
||||
# Clamp to ensure it's in the proper range
|
||||
tensor.clamp_(min=a, max=b)
|
||||
return tensor
|
||||
|
||||
|
||||
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
|
||||
# type: (Tensor, float, float, float, float) -> Tensor
|
||||
r"""Fills the input Tensor with values drawn from a truncated
|
||||
normal distribution. The values are effectively drawn from the
|
||||
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
|
||||
with values outside :math:`[a, b]` redrawn until they are within
|
||||
the bounds. The method used for generating the random values works
|
||||
best when :math:`a \leq \text{mean} \leq b`.
|
||||
Args:
|
||||
tensor: an n-dimensional `torch.Tensor`
|
||||
mean: the mean of the normal distribution
|
||||
std: the standard deviation of the normal distribution
|
||||
a: the minimum cutoff value
|
||||
b: the maximum cutoff value
|
||||
Examples:
|
||||
>>> w = torch.empty(3, 5)
|
||||
>>> nn.init.trunc_normal_(w)
|
||||
"""
|
||||
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
|
1
lib/trade_models/__init__.py
Normal file
1
lib/trade_models/__init__.py
Normal file
@ -0,0 +1 @@
|
||||
from .quant_transformer import QuantTransformer
|
461
lib/trade_models/quant_transformer.py
Executable file
461
lib/trade_models/quant_transformer.py
Executable file
@ -0,0 +1,461 @@
|
||||
# Copyright (c) Microsoft Corporation.
|
||||
# Licensed under the MIT License.
|
||||
|
||||
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import os
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import copy
|
||||
from functools import partial
|
||||
from sklearn.metrics import roc_auc_score, mean_squared_error
|
||||
from typing import Optional
|
||||
import logging
|
||||
|
||||
from qlib.utils import (
|
||||
unpack_archive_with_buffer,
|
||||
save_multiple_parts_file,
|
||||
create_save_path,
|
||||
drop_nan_by_y_index,
|
||||
)
|
||||
from qlib.log import get_module_logger, TimeInspector
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
|
||||
from layers import DropPath, trunc_normal_
|
||||
|
||||
from qlib.model.base import Model
|
||||
from qlib.data.dataset import DatasetH
|
||||
from qlib.data.dataset.handler import DataHandlerLP
|
||||
|
||||
|
||||
class QuantTransformer(Model):
|
||||
"""Transformer-based Quant Model
|
||||
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
d_feat=6,
|
||||
hidden_size=64,
|
||||
num_layers=2,
|
||||
dropout=0.0,
|
||||
n_epochs=200,
|
||||
lr=0.001,
|
||||
metric="",
|
||||
batch_size=2000,
|
||||
early_stop=20,
|
||||
loss="mse",
|
||||
optimizer="adam",
|
||||
GPU=0,
|
||||
seed=None,
|
||||
**kwargs
|
||||
):
|
||||
# Set logger.
|
||||
self.logger = get_module_logger("QuantTransformer")
|
||||
self.logger.info("QuantTransformer pytorch version...")
|
||||
|
||||
# set hyper-parameters.
|
||||
self.d_feat = d_feat
|
||||
self.hidden_size = hidden_size
|
||||
self.num_layers = num_layers
|
||||
self.dropout = dropout
|
||||
self.n_epochs = n_epochs
|
||||
self.lr = lr
|
||||
self.metric = metric
|
||||
self.batch_size = batch_size
|
||||
self.early_stop = early_stop
|
||||
self.optimizer = optimizer.lower()
|
||||
self.loss = loss
|
||||
self.device = torch.device("cuda:{:}".format(GPU) if torch.cuda.is_available() else "cpu")
|
||||
self.use_gpu = torch.cuda.is_available()
|
||||
self.seed = seed
|
||||
|
||||
self.logger.info(
|
||||
"GRU parameters setting:"
|
||||
"\nd_feat : {}"
|
||||
"\nhidden_size : {}"
|
||||
"\nnum_layers : {}"
|
||||
"\ndropout : {}"
|
||||
"\nn_epochs : {}"
|
||||
"\nlr : {}"
|
||||
"\nmetric : {}"
|
||||
"\nbatch_size : {}"
|
||||
"\nearly_stop : {}"
|
||||
"\noptimizer : {}"
|
||||
"\nloss_type : {}"
|
||||
"\nvisible_GPU : {}"
|
||||
"\nuse_GPU : {}"
|
||||
"\nseed : {}".format(
|
||||
d_feat,
|
||||
hidden_size,
|
||||
num_layers,
|
||||
dropout,
|
||||
n_epochs,
|
||||
lr,
|
||||
metric,
|
||||
batch_size,
|
||||
early_stop,
|
||||
optimizer.lower(),
|
||||
loss,
|
||||
GPU,
|
||||
self.use_gpu,
|
||||
seed,
|
||||
)
|
||||
)
|
||||
|
||||
if self.seed is not None:
|
||||
np.random.seed(self.seed)
|
||||
torch.manual_seed(self.seed)
|
||||
|
||||
self.model = TransformerModel(d_feat=self.d_feat)
|
||||
if optimizer.lower() == "adam":
|
||||
self.train_optimizer = optim.Adam(self.model.parameters(), lr=self.lr)
|
||||
elif optimizer.lower() == "gd":
|
||||
self.train_optimizer = optim.SGD(self.model.parameters(), lr=self.lr)
|
||||
else:
|
||||
raise NotImplementedError("optimizer {:} is not supported!".format(optimizer))
|
||||
|
||||
self.fitted = False
|
||||
self.model.to(self.device)
|
||||
|
||||
def mse(self, pred, label):
|
||||
loss = (pred - label) ** 2
|
||||
return torch.mean(loss)
|
||||
|
||||
def loss_fn(self, pred, label):
|
||||
mask = ~torch.isnan(label)
|
||||
|
||||
if self.loss == "mse":
|
||||
return self.mse(pred[mask], label[mask])
|
||||
|
||||
raise ValueError("unknown loss `%s`" % self.loss)
|
||||
|
||||
def metric_fn(self, pred, label):
|
||||
|
||||
mask = torch.isfinite(label)
|
||||
|
||||
if self.metric == "" or self.metric == "loss":
|
||||
return -self.loss_fn(pred[mask], label[mask])
|
||||
|
||||
raise ValueError("unknown metric `%s`" % self.metric)
|
||||
|
||||
def train_epoch(self, x_train, y_train):
|
||||
|
||||
x_train_values = x_train.values
|
||||
y_train_values = np.squeeze(y_train.values)
|
||||
|
||||
self.model.train()
|
||||
|
||||
indices = np.arange(len(x_train_values))
|
||||
np.random.shuffle(indices)
|
||||
|
||||
for i in range(len(indices))[:: self.batch_size]:
|
||||
|
||||
if len(indices) - i < self.batch_size:
|
||||
break
|
||||
|
||||
feature = torch.from_numpy(x_train_values[indices[i : i + self.batch_size]]).float().to(self.device)
|
||||
label = torch.from_numpy(y_train_values[indices[i : i + self.batch_size]]).float().to(self.device)
|
||||
|
||||
pred = self.model(feature)
|
||||
loss = self.loss_fn(pred, label)
|
||||
|
||||
self.train_optimizer.zero_grad()
|
||||
loss.backward()
|
||||
torch.nn.utils.clip_grad_value_(self.model.parameters(), 3.0)
|
||||
self.train_optimizer.step()
|
||||
|
||||
def test_epoch(self, data_x, data_y):
|
||||
|
||||
# prepare training data
|
||||
x_values = data_x.values
|
||||
y_values = np.squeeze(data_y.values)
|
||||
|
||||
self.model.eval()
|
||||
|
||||
scores = []
|
||||
losses = []
|
||||
|
||||
indices = np.arange(len(x_values))
|
||||
import pdb; pdb.set_trace()
|
||||
|
||||
for i in range(len(indices))[:: self.batch_size]:
|
||||
|
||||
if len(indices) - i < self.batch_size:
|
||||
break
|
||||
|
||||
feature = torch.from_numpy(x_values[indices[i : i + self.batch_size]]).float().to(self.device)
|
||||
label = torch.from_numpy(y_values[indices[i : i + self.batch_size]]).float().to(self.device)
|
||||
|
||||
pred = self.model(feature)
|
||||
loss = self.loss_fn(pred, label)
|
||||
losses.append(loss.item())
|
||||
|
||||
score = self.metric_fn(pred, label)
|
||||
scores.append(score.item())
|
||||
|
||||
return np.mean(losses), np.mean(scores)
|
||||
|
||||
def fit(
|
||||
self,
|
||||
dataset: DatasetH,
|
||||
evals_result=dict(),
|
||||
verbose=True,
|
||||
save_path=None,
|
||||
):
|
||||
|
||||
df_train, df_valid, df_test = dataset.prepare(
|
||||
["train", "valid", "test"],
|
||||
col_set=["feature", "label"],
|
||||
data_key=DataHandlerLP.DK_L,
|
||||
)
|
||||
|
||||
x_train, y_train = df_train["feature"], df_train["label"]
|
||||
x_valid, y_valid = df_valid["feature"], df_valid["label"]
|
||||
|
||||
if save_path == None:
|
||||
save_path = create_save_path(save_path)
|
||||
stop_steps = 0
|
||||
train_loss = 0
|
||||
best_score = -np.inf
|
||||
best_epoch = 0
|
||||
evals_result["train"] = []
|
||||
evals_result["valid"] = []
|
||||
|
||||
# train
|
||||
self.logger.info("training...")
|
||||
self.fitted = True
|
||||
|
||||
for step in range(self.n_epochs):
|
||||
self.logger.info("Epoch%d:", step)
|
||||
self.logger.info("training...")
|
||||
self.train_epoch(x_train, y_train)
|
||||
self.logger.info("evaluating...")
|
||||
train_loss, train_score = self.test_epoch(x_train, y_train)
|
||||
val_loss, val_score = self.test_epoch(x_valid, y_valid)
|
||||
self.logger.info("train %.6f, valid %.6f" % (train_score, val_score))
|
||||
evals_result["train"].append(train_score)
|
||||
evals_result["valid"].append(val_score)
|
||||
|
||||
if val_score > best_score:
|
||||
best_score = val_score
|
||||
stop_steps = 0
|
||||
best_epoch = step
|
||||
best_param = copy.deepcopy(self.model.state_dict())
|
||||
else:
|
||||
stop_steps += 1
|
||||
if stop_steps >= self.early_stop:
|
||||
self.logger.info("early stop")
|
||||
break
|
||||
|
||||
self.logger.info("best score: %.6lf @ %d" % (best_score, best_epoch))
|
||||
self.model.load_state_dict(best_param)
|
||||
torch.save(best_param, save_path)
|
||||
|
||||
if self.use_gpu:
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
def predict(self, dataset):
|
||||
if not self.fitted:
|
||||
raise ValueError("model is not fitted yet!")
|
||||
|
||||
x_test = dataset.prepare("test", col_set="feature")
|
||||
index = x_test.index
|
||||
self.model.eval()
|
||||
x_values = x_test.values
|
||||
sample_num = x_values.shape[0]
|
||||
preds = []
|
||||
|
||||
for begin in range(sample_num)[:: self.batch_size]:
|
||||
|
||||
if sample_num - begin < self.batch_size:
|
||||
end = sample_num
|
||||
else:
|
||||
end = begin + self.batch_size
|
||||
|
||||
x_batch = torch.from_numpy(x_values[begin:end]).float().to(self.device)
|
||||
|
||||
with torch.no_grad():
|
||||
if self.use_gpu:
|
||||
pred = self.model(x_batch).detach().cpu().numpy()
|
||||
else:
|
||||
pred = self.model(x_batch).detach().numpy()
|
||||
|
||||
preds.append(pred)
|
||||
|
||||
return pd.Series(np.concatenate(preds), index=index)
|
||||
|
||||
|
||||
# Real Model
|
||||
|
||||
|
||||
class Mlp(nn.Module):
|
||||
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
||||
super().__init__()
|
||||
out_features = out_features or in_features
|
||||
hidden_features = hidden_features or in_features
|
||||
self.fc1 = nn.Linear(in_features, hidden_features)
|
||||
self.act = act_layer()
|
||||
self.fc2 = nn.Linear(hidden_features, out_features)
|
||||
self.drop = nn.Dropout(drop)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.fc1(x)
|
||||
x = self.act(x)
|
||||
x = self.drop(x)
|
||||
x = self.fc2(x)
|
||||
x = self.drop(x)
|
||||
return x
|
||||
|
||||
|
||||
class Attention(nn.Module):
|
||||
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
|
||||
super().__init__()
|
||||
self.num_heads = num_heads
|
||||
head_dim = dim // num_heads
|
||||
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
|
||||
self.scale = qk_scale or head_dim ** -0.5
|
||||
|
||||
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
||||
self.attn_drop = nn.Dropout(attn_drop)
|
||||
self.proj = nn.Linear(dim, dim)
|
||||
self.proj_drop = nn.Dropout(proj_drop)
|
||||
|
||||
def forward(self, x):
|
||||
B, N, C = x.shape
|
||||
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
||||
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
||||
|
||||
attn = (q @ k.transpose(-2, -1)) * self.scale
|
||||
attn = attn.softmax(dim=-1)
|
||||
attn = self.attn_drop(attn)
|
||||
|
||||
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
||||
x = self.proj(x)
|
||||
x = self.proj_drop(x)
|
||||
return x
|
||||
|
||||
|
||||
class Block(nn.Module):
|
||||
|
||||
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
||||
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
|
||||
super().__init__()
|
||||
self.norm1 = norm_layer(dim)
|
||||
self.attn = Attention(
|
||||
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
|
||||
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
||||
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
||||
self.norm2 = norm_layer(dim)
|
||||
mlp_hidden_dim = int(dim * mlp_ratio)
|
||||
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
||||
|
||||
def forward(self, x):
|
||||
x = x + self.drop_path(self.attn(self.norm1(x)))
|
||||
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
||||
return x
|
||||
|
||||
|
||||
class SimpleEmbed(nn.Module):
|
||||
|
||||
def __init__(self, d_feat, embed_dim):
|
||||
super(SimpleEmbed, self).__init__()
|
||||
self.proj = nn.Linear(d_feat, embed_dim)
|
||||
|
||||
def forward(self, x):
|
||||
import pdb; pdb.set_trace()
|
||||
B, C, H, W = x.shape
|
||||
# FIXME look at relaxing size constraints
|
||||
assert H == self.img_size[0] and W == self.img_size[1], \
|
||||
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
||||
x = self.proj(x).flatten(2).transpose(1, 2)
|
||||
return x
|
||||
|
||||
|
||||
class TransformerModel(nn.Module):
|
||||
def __init__(self,
|
||||
d_feat: int,
|
||||
embed_dim: int = 64,
|
||||
depth: int = 4,
|
||||
num_heads: int = 4,
|
||||
mlp_ratio: float = 4.,
|
||||
qkv_bias: bool = True,
|
||||
qk_scale: Optional[float] = None,
|
||||
drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=None):
|
||||
"""
|
||||
Args:
|
||||
d_feat (int, tuple): input image size
|
||||
embed_dim (int): embedding dimension
|
||||
depth (int): depth of transformer
|
||||
num_heads (int): number of attention heads
|
||||
mlp_ratio (int): ratio of mlp hidden dim to embedding dim
|
||||
qkv_bias (bool): enable bias for qkv if True
|
||||
qk_scale (float): override default qk scale of head_dim ** -0.5 if set
|
||||
drop_rate (float): dropout rate
|
||||
attn_drop_rate (float): attention dropout rate
|
||||
drop_path_rate (float): stochastic depth rate
|
||||
norm_layer: (nn.Module): normalization layer
|
||||
"""
|
||||
super(TransformerModel, self).__init__()
|
||||
self.embed_dim = embed_dim
|
||||
self.num_features = embed_dim
|
||||
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
|
||||
|
||||
self.input_embed = SimpleEmbed(d_feat, embed_dim=embed_dim)
|
||||
|
||||
"""
|
||||
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
||||
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
|
||||
self.pos_drop = nn.Dropout(p=drop_rate)
|
||||
"""
|
||||
|
||||
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
|
||||
self.blocks = nn.ModuleList([
|
||||
Block(
|
||||
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
||||
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer)
|
||||
for i in range(depth)])
|
||||
self.norm = norm_layer(embed_dim)
|
||||
|
||||
# regression head
|
||||
self.head = nn.Linear(self.num_features, 1)
|
||||
|
||||
"""
|
||||
trunc_normal_(self.pos_embed, std=.02)
|
||||
trunc_normal_(self.cls_token, std=.02)
|
||||
"""
|
||||
self.apply(self._init_weights)
|
||||
|
||||
def _init_weights(self, m):
|
||||
if isinstance(m, nn.Linear):
|
||||
trunc_normal_(m.weight, std=.02)
|
||||
if isinstance(m, nn.Linear) and m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
elif isinstance(m, nn.LayerNorm):
|
||||
nn.init.constant_(m.bias, 0)
|
||||
nn.init.constant_(m.weight, 1.0)
|
||||
|
||||
def forward_features(self, x):
|
||||
B = x.shape[0]
|
||||
x = self.input_embed(x)
|
||||
|
||||
cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
|
||||
x = torch.cat((cls_tokens, x), dim=1)
|
||||
x = x + self.pos_embed
|
||||
x = self.pos_drop(x)
|
||||
|
||||
for blk in self.blocks:
|
||||
x = blk(x)
|
||||
|
||||
x = self.norm(x)[:, 0]
|
||||
return x
|
||||
|
||||
def forward(self, x):
|
||||
x = self.forward_features(x)
|
||||
x = self.head(x)
|
||||
return x
|
Loading…
Reference in New Issue
Block a user