Start prototype

This commit is contained in:
D-X-Y 2021-02-25 00:24:56 -08:00
parent c3e12956ae
commit a867ea5209
9 changed files with 792 additions and 6 deletions

1
.gitignore vendored
View File

@ -128,3 +128,4 @@ TEMP-L.sh
# Visual Studio Code
.vscode
mlruns

View File

@ -16,7 +16,7 @@ endif
"显示行号
"set number
""设置缩进有三个取值cindent(c风格)、smartindent(智能模式,其实不觉得有什么智能)、autoindent(简单的与上一行保持一致)
set cindent
set autoindent
"在windows版本中vim的退格键模式默认与vi兼容与我们的使用习惯不太符合下边这条可以改过来
"set backspace=indent,eol,start
""用空格键替换制表符

View File

@ -1,3 +0,0 @@
import os
print('xxx123')

View File

@ -0,0 +1,94 @@
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
#####################################################
# Refer to:
# - https://github.com/microsoft/qlib/blob/main/examples/workflow_by_code.ipynb
# - https://github.com/microsoft/qlib/blob/main/examples/workflow_by_code.py
# python exps/trading/workflow_test.py
#####################################################
import sys, site
from pathlib import Path
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
import qlib
import pandas as pd
from qlib.config import REG_CN
from qlib.contrib.model.gbdt import LGBModel
from qlib.contrib.data.handler import Alpha158
from qlib.contrib.strategy.strategy import TopkDropoutStrategy
from qlib.contrib.evaluate import (
backtest as normal_backtest,
risk_analysis,
)
from qlib.utils import exists_qlib_data, init_instance_by_config
from qlib.workflow import R
from qlib.workflow.record_temp import SignalRecord, PortAnaRecord
from qlib.utils import flatten_dict
# use default data
# NOTE: need to download data from remote: python scripts/get_data.py qlib_data_cn --target_dir ~/.qlib/qlib_data/cn_data
provider_uri = "~/.qlib/qlib_data/cn_data" # target_dir
if not exists_qlib_data(provider_uri):
print(f"Qlib data is not found in {provider_uri}")
sys.path.append(str(scripts_dir))
from get_data import GetData
GetData().qlib_data(target_dir=provider_uri, region=REG_CN)
qlib.init(provider_uri=provider_uri, region=REG_CN)
market = "csi300"
benchmark = "SH000300"
###################################
# train model
###################################
data_handler_config = {
"start_time": "2008-01-01",
"end_time": "2020-08-01",
"fit_start_time": "2008-01-01",
"fit_end_time": "2014-12-31",
"instruments": market,
}
task = {
"model": {
"class": "QuantTransformer",
"module_path": "trade_models",
"kwargs": {
"loss": "mse",
"GPU": "0",
"metric": "loss",
},
},
"dataset": {
"class": "DatasetH",
"module_path": "qlib.data.dataset",
"kwargs": {
"handler": {
"class": "Alpha158",
"module_path": "qlib.contrib.data.handler",
"kwargs": data_handler_config,
},
"segments": {
"train": ("2008-01-01", "2014-12-31"),
"valid": ("2015-01-01", "2016-12-31"),
"test": ("2017-01-01", "2020-08-01"),
},
},
},
}
# model initiaiton
model = init_instance_by_config(task["model"])
dataset = init_instance_by_config(task["dataset"])
# start exp to train model
with R.start(experiment_name="train_model"):
R.log_params(**flatten_dict(task))
model.fit(dataset)
R.save_objects(trained_model=model)
rid = R.get_recorder().id

2
lib/layers/__init__.py Normal file
View File

@ -0,0 +1,2 @@
from .drop import DropBlock2d, DropPath
from .weight_init import trunc_normal_

169
lib/layers/drop.py Normal file
View File

@ -0,0 +1,169 @@
""" Borrowed from https://github.com/rwightman/pytorch-image-models
DropBlock, DropPath
PyTorch implementations of DropBlock and DropPath (Stochastic Depth) regularization layers.
Papers:
DropBlock: A regularization method for convolutional networks (https://arxiv.org/abs/1810.12890)
Deep Networks with Stochastic Depth (https://arxiv.org/abs/1603.09382)
Code:
DropBlock impl inspired by two Tensorflow impl that I liked:
- https://github.com/tensorflow/tpu/blob/master/models/official/resnet/resnet_model.py#L74
- https://github.com/clovaai/assembled-cnn/blob/master/nets/blocks.py
Hacked together by / Copyright 2020 Ross Wightman
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
def drop_block_2d(
x, drop_prob: float = 0.1, block_size: int = 7, gamma_scale: float = 1.0,
with_noise: bool = False, inplace: bool = False, batchwise: bool = False):
""" DropBlock. See https://arxiv.org/pdf/1810.12890.pdf
DropBlock with an experimental gaussian noise option. This layer has been tested on a few training
runs with success, but needs further validation and possibly optimization for lower runtime impact.
"""
B, C, H, W = x.shape
total_size = W * H
clipped_block_size = min(block_size, min(W, H))
# seed_drop_rate, the gamma parameter
gamma = gamma_scale * drop_prob * total_size / clipped_block_size ** 2 / (
(W - block_size + 1) * (H - block_size + 1))
# Forces the block to be inside the feature map.
w_i, h_i = torch.meshgrid(torch.arange(W).to(x.device), torch.arange(H).to(x.device))
valid_block = ((w_i >= clipped_block_size // 2) & (w_i < W - (clipped_block_size - 1) // 2)) & \
((h_i >= clipped_block_size // 2) & (h_i < H - (clipped_block_size - 1) // 2))
valid_block = torch.reshape(valid_block, (1, 1, H, W)).to(dtype=x.dtype)
if batchwise:
# one mask for whole batch, quite a bit faster
uniform_noise = torch.rand((1, C, H, W), dtype=x.dtype, device=x.device)
else:
uniform_noise = torch.rand_like(x)
block_mask = ((2 - gamma - valid_block + uniform_noise) >= 1).to(dtype=x.dtype)
block_mask = -F.max_pool2d(
-block_mask,
kernel_size=clipped_block_size, # block_size,
stride=1,
padding=clipped_block_size // 2)
if with_noise:
normal_noise = torch.randn((1, C, H, W), dtype=x.dtype, device=x.device) if batchwise else torch.randn_like(x)
if inplace:
x.mul_(block_mask).add_(normal_noise * (1 - block_mask))
else:
x = x * block_mask + normal_noise * (1 - block_mask)
else:
normalize_scale = (block_mask.numel() / block_mask.to(dtype=torch.float32).sum().add(1e-7)).to(x.dtype)
if inplace:
x.mul_(block_mask * normalize_scale)
else:
x = x * block_mask * normalize_scale
return x
def drop_block_fast_2d(
x: torch.Tensor, drop_prob: float = 0.1, block_size: int = 7,
gamma_scale: float = 1.0, with_noise: bool = False, inplace: bool = False, batchwise: bool = False):
""" DropBlock. See https://arxiv.org/pdf/1810.12890.pdf
DropBlock with an experimental gaussian noise option. Simplied from above without concern for valid
block mask at edges.
"""
B, C, H, W = x.shape
total_size = W * H
clipped_block_size = min(block_size, min(W, H))
gamma = gamma_scale * drop_prob * total_size / clipped_block_size ** 2 / (
(W - block_size + 1) * (H - block_size + 1))
if batchwise:
# one mask for whole batch, quite a bit faster
block_mask = torch.rand((1, C, H, W), dtype=x.dtype, device=x.device) < gamma
else:
# mask per batch element
block_mask = torch.rand_like(x) < gamma
block_mask = F.max_pool2d(
block_mask.to(x.dtype), kernel_size=clipped_block_size, stride=1, padding=clipped_block_size // 2)
if with_noise:
normal_noise = torch.randn((1, C, H, W), dtype=x.dtype, device=x.device) if batchwise else torch.randn_like(x)
if inplace:
x.mul_(1. - block_mask).add_(normal_noise * block_mask)
else:
x = x * (1. - block_mask) + normal_noise * block_mask
else:
block_mask = 1 - block_mask
normalize_scale = (block_mask.numel() / block_mask.to(dtype=torch.float32).sum().add(1e-7)).to(dtype=x.dtype)
if inplace:
x.mul_(block_mask * normalize_scale)
else:
x = x * block_mask * normalize_scale
return x
class DropBlock2d(nn.Module):
""" DropBlock. See https://arxiv.org/pdf/1810.12890.pdf
"""
def __init__(self,
drop_prob=0.1,
block_size=7,
gamma_scale=1.0,
with_noise=False,
inplace=False,
batchwise=False,
fast=True):
super(DropBlock2d, self).__init__()
self.drop_prob = drop_prob
self.gamma_scale = gamma_scale
self.block_size = block_size
self.with_noise = with_noise
self.inplace = inplace
self.batchwise = batchwise
self.fast = fast # FIXME finish comparisons of fast vs not
def forward(self, x):
if not self.training or not self.drop_prob:
return x
if self.fast:
return drop_block_fast_2d(
x, self.drop_prob, self.block_size, self.gamma_scale, self.with_noise, self.inplace, self.batchwise)
else:
return drop_block_2d(
x, self.drop_prob, self.block_size, self.gamma_scale, self.with_noise, self.inplace, self.batchwise)
def drop_path(x, drop_prob: float = 0., training: bool = False):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
'survival rate' as the argument.
"""
if drop_prob == 0. or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
random_tensor.floor_() # binarize
output = x.div(keep_prob) * random_tensor
return output
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)

61
lib/layers/weight_init.py Normal file
View File

@ -0,0 +1,61 @@
# Borrowed from https://github.com/rwightman/pytorch-image-models
import torch
import math
import warnings
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
# Cut & paste from PyTorch official master until it's in a few official releases - RW
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
def norm_cdf(x):
# Computes standard normal cumulative distribution function
return (1. + math.erf(x / math.sqrt(2.))) / 2.
if (mean < a - 2 * std) or (mean > b + 2 * std):
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
"The distribution of values may be incorrect.",
stacklevel=2)
with torch.no_grad():
# Values are generated by using a truncated uniform distribution and
# then using the inverse CDF for the normal distribution.
# Get upper and lower cdf values
l = norm_cdf((a - mean) / std)
u = norm_cdf((b - mean) / std)
# Uniformly fill tensor with values from [l, u], then translate to
# [2l-1, 2u-1].
tensor.uniform_(2 * l - 1, 2 * u - 1)
# Use inverse cdf transform for normal distribution to get truncated
# standard normal
tensor.erfinv_()
# Transform to proper mean, std
tensor.mul_(std * math.sqrt(2.))
tensor.add_(mean)
# Clamp to ensure it's in the proper range
tensor.clamp_(min=a, max=b)
return tensor
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
# type: (Tensor, float, float, float, float) -> Tensor
r"""Fills the input Tensor with values drawn from a truncated
normal distribution. The values are effectively drawn from the
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
with values outside :math:`[a, b]` redrawn until they are within
the bounds. The method used for generating the random values works
best when :math:`a \leq \text{mean} \leq b`.
Args:
tensor: an n-dimensional `torch.Tensor`
mean: the mean of the normal distribution
std: the standard deviation of the normal distribution
a: the minimum cutoff value
b: the maximum cutoff value
Examples:
>>> w = torch.empty(3, 5)
>>> nn.init.trunc_normal_(w)
"""
return _no_grad_trunc_normal_(tensor, mean, std, a, b)

View File

@ -0,0 +1 @@
from .quant_transformer import QuantTransformer

View File

@ -0,0 +1,461 @@
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
from __future__ import division
from __future__ import print_function
import os
import numpy as np
import pandas as pd
import copy
from functools import partial
from sklearn.metrics import roc_auc_score, mean_squared_error
from typing import Optional
import logging
from qlib.utils import (
unpack_archive_with_buffer,
save_multiple_parts_file,
create_save_path,
drop_nan_by_y_index,
)
from qlib.log import get_module_logger, TimeInspector
import torch
import torch.nn as nn
import torch.optim as optim
from layers import DropPath, trunc_normal_
from qlib.model.base import Model
from qlib.data.dataset import DatasetH
from qlib.data.dataset.handler import DataHandlerLP
class QuantTransformer(Model):
"""Transformer-based Quant Model
"""
def __init__(
self,
d_feat=6,
hidden_size=64,
num_layers=2,
dropout=0.0,
n_epochs=200,
lr=0.001,
metric="",
batch_size=2000,
early_stop=20,
loss="mse",
optimizer="adam",
GPU=0,
seed=None,
**kwargs
):
# Set logger.
self.logger = get_module_logger("QuantTransformer")
self.logger.info("QuantTransformer pytorch version...")
# set hyper-parameters.
self.d_feat = d_feat
self.hidden_size = hidden_size
self.num_layers = num_layers
self.dropout = dropout
self.n_epochs = n_epochs
self.lr = lr
self.metric = metric
self.batch_size = batch_size
self.early_stop = early_stop
self.optimizer = optimizer.lower()
self.loss = loss
self.device = torch.device("cuda:{:}".format(GPU) if torch.cuda.is_available() else "cpu")
self.use_gpu = torch.cuda.is_available()
self.seed = seed
self.logger.info(
"GRU parameters setting:"
"\nd_feat : {}"
"\nhidden_size : {}"
"\nnum_layers : {}"
"\ndropout : {}"
"\nn_epochs : {}"
"\nlr : {}"
"\nmetric : {}"
"\nbatch_size : {}"
"\nearly_stop : {}"
"\noptimizer : {}"
"\nloss_type : {}"
"\nvisible_GPU : {}"
"\nuse_GPU : {}"
"\nseed : {}".format(
d_feat,
hidden_size,
num_layers,
dropout,
n_epochs,
lr,
metric,
batch_size,
early_stop,
optimizer.lower(),
loss,
GPU,
self.use_gpu,
seed,
)
)
if self.seed is not None:
np.random.seed(self.seed)
torch.manual_seed(self.seed)
self.model = TransformerModel(d_feat=self.d_feat)
if optimizer.lower() == "adam":
self.train_optimizer = optim.Adam(self.model.parameters(), lr=self.lr)
elif optimizer.lower() == "gd":
self.train_optimizer = optim.SGD(self.model.parameters(), lr=self.lr)
else:
raise NotImplementedError("optimizer {:} is not supported!".format(optimizer))
self.fitted = False
self.model.to(self.device)
def mse(self, pred, label):
loss = (pred - label) ** 2
return torch.mean(loss)
def loss_fn(self, pred, label):
mask = ~torch.isnan(label)
if self.loss == "mse":
return self.mse(pred[mask], label[mask])
raise ValueError("unknown loss `%s`" % self.loss)
def metric_fn(self, pred, label):
mask = torch.isfinite(label)
if self.metric == "" or self.metric == "loss":
return -self.loss_fn(pred[mask], label[mask])
raise ValueError("unknown metric `%s`" % self.metric)
def train_epoch(self, x_train, y_train):
x_train_values = x_train.values
y_train_values = np.squeeze(y_train.values)
self.model.train()
indices = np.arange(len(x_train_values))
np.random.shuffle(indices)
for i in range(len(indices))[:: self.batch_size]:
if len(indices) - i < self.batch_size:
break
feature = torch.from_numpy(x_train_values[indices[i : i + self.batch_size]]).float().to(self.device)
label = torch.from_numpy(y_train_values[indices[i : i + self.batch_size]]).float().to(self.device)
pred = self.model(feature)
loss = self.loss_fn(pred, label)
self.train_optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_value_(self.model.parameters(), 3.0)
self.train_optimizer.step()
def test_epoch(self, data_x, data_y):
# prepare training data
x_values = data_x.values
y_values = np.squeeze(data_y.values)
self.model.eval()
scores = []
losses = []
indices = np.arange(len(x_values))
import pdb; pdb.set_trace()
for i in range(len(indices))[:: self.batch_size]:
if len(indices) - i < self.batch_size:
break
feature = torch.from_numpy(x_values[indices[i : i + self.batch_size]]).float().to(self.device)
label = torch.from_numpy(y_values[indices[i : i + self.batch_size]]).float().to(self.device)
pred = self.model(feature)
loss = self.loss_fn(pred, label)
losses.append(loss.item())
score = self.metric_fn(pred, label)
scores.append(score.item())
return np.mean(losses), np.mean(scores)
def fit(
self,
dataset: DatasetH,
evals_result=dict(),
verbose=True,
save_path=None,
):
df_train, df_valid, df_test = dataset.prepare(
["train", "valid", "test"],
col_set=["feature", "label"],
data_key=DataHandlerLP.DK_L,
)
x_train, y_train = df_train["feature"], df_train["label"]
x_valid, y_valid = df_valid["feature"], df_valid["label"]
if save_path == None:
save_path = create_save_path(save_path)
stop_steps = 0
train_loss = 0
best_score = -np.inf
best_epoch = 0
evals_result["train"] = []
evals_result["valid"] = []
# train
self.logger.info("training...")
self.fitted = True
for step in range(self.n_epochs):
self.logger.info("Epoch%d:", step)
self.logger.info("training...")
self.train_epoch(x_train, y_train)
self.logger.info("evaluating...")
train_loss, train_score = self.test_epoch(x_train, y_train)
val_loss, val_score = self.test_epoch(x_valid, y_valid)
self.logger.info("train %.6f, valid %.6f" % (train_score, val_score))
evals_result["train"].append(train_score)
evals_result["valid"].append(val_score)
if val_score > best_score:
best_score = val_score
stop_steps = 0
best_epoch = step
best_param = copy.deepcopy(self.model.state_dict())
else:
stop_steps += 1
if stop_steps >= self.early_stop:
self.logger.info("early stop")
break
self.logger.info("best score: %.6lf @ %d" % (best_score, best_epoch))
self.model.load_state_dict(best_param)
torch.save(best_param, save_path)
if self.use_gpu:
torch.cuda.empty_cache()
def predict(self, dataset):
if not self.fitted:
raise ValueError("model is not fitted yet!")
x_test = dataset.prepare("test", col_set="feature")
index = x_test.index
self.model.eval()
x_values = x_test.values
sample_num = x_values.shape[0]
preds = []
for begin in range(sample_num)[:: self.batch_size]:
if sample_num - begin < self.batch_size:
end = sample_num
else:
end = begin + self.batch_size
x_batch = torch.from_numpy(x_values[begin:end]).float().to(self.device)
with torch.no_grad():
if self.use_gpu:
pred = self.model(x_batch).detach().cpu().numpy()
else:
pred = self.model(x_batch).detach().numpy()
preds.append(pred)
return pd.Series(np.concatenate(preds), index=index)
# Real Model
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
def forward(self, x):
x = x + self.drop_path(self.attn(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class SimpleEmbed(nn.Module):
def __init__(self, d_feat, embed_dim):
super(SimpleEmbed, self).__init__()
self.proj = nn.Linear(d_feat, embed_dim)
def forward(self, x):
import pdb; pdb.set_trace()
B, C, H, W = x.shape
# FIXME look at relaxing size constraints
assert H == self.img_size[0] and W == self.img_size[1], \
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
x = self.proj(x).flatten(2).transpose(1, 2)
return x
class TransformerModel(nn.Module):
def __init__(self,
d_feat: int,
embed_dim: int = 64,
depth: int = 4,
num_heads: int = 4,
mlp_ratio: float = 4.,
qkv_bias: bool = True,
qk_scale: Optional[float] = None,
drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=None):
"""
Args:
d_feat (int, tuple): input image size
embed_dim (int): embedding dimension
depth (int): depth of transformer
num_heads (int): number of attention heads
mlp_ratio (int): ratio of mlp hidden dim to embedding dim
qkv_bias (bool): enable bias for qkv if True
qk_scale (float): override default qk scale of head_dim ** -0.5 if set
drop_rate (float): dropout rate
attn_drop_rate (float): attention dropout rate
drop_path_rate (float): stochastic depth rate
norm_layer: (nn.Module): normalization layer
"""
super(TransformerModel, self).__init__()
self.embed_dim = embed_dim
self.num_features = embed_dim
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
self.input_embed = SimpleEmbed(d_feat, embed_dim=embed_dim)
"""
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
self.pos_drop = nn.Dropout(p=drop_rate)
"""
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
self.blocks = nn.ModuleList([
Block(
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer)
for i in range(depth)])
self.norm = norm_layer(embed_dim)
# regression head
self.head = nn.Linear(self.num_features, 1)
"""
trunc_normal_(self.pos_embed, std=.02)
trunc_normal_(self.cls_token, std=.02)
"""
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def forward_features(self, x):
B = x.shape[0]
x = self.input_embed(x)
cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
x = torch.cat((cls_tokens, x), dim=1)
x = x + self.pos_embed
x = self.pos_drop(x)
for blk in self.blocks:
x = blk(x)
x = self.norm(x)[:, 0]
return x
def forward(self, x):
x = self.forward_features(x)
x = self.head(x)
return x