Fix black issues
This commit is contained in:
parent
06fe246d82
commit
b11cfe263d
@ -161,7 +161,10 @@ if __name__ == "__main__":
|
||||
help="The synthetic enviornment version.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--hidden_dim", type=int, required=True, help="The hidden dimension.",
|
||||
"--hidden_dim",
|
||||
type=int,
|
||||
required=True,
|
||||
help="The hidden dimension.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--init_lr",
|
||||
@ -170,10 +173,16 @@ if __name__ == "__main__":
|
||||
help="The initial learning rate for the optimizer (default is Adam)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--batch_size", type=int, default=512, help="The batch size",
|
||||
"--batch_size",
|
||||
type=int,
|
||||
default=512,
|
||||
help="The batch size",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--epochs", type=int, default=1000, help="The total number of epochs.",
|
||||
"--epochs",
|
||||
type=int,
|
||||
default=1000,
|
||||
help="The total number of epochs.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--srange", type=str, required=True, help="The range of models to be evaluated"
|
||||
|
@ -41,7 +41,10 @@ class MAML:
|
||||
)
|
||||
self.meta_lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
|
||||
self.meta_optimizer,
|
||||
milestones=[int(epochs * 0.8), int(epochs * 0.9),],
|
||||
milestones=[
|
||||
int(epochs * 0.8),
|
||||
int(epochs * 0.9),
|
||||
],
|
||||
gamma=0.1,
|
||||
)
|
||||
self.inner_lr = inner_lr
|
||||
@ -194,7 +197,10 @@ if __name__ == "__main__":
|
||||
help="The synthetic enviornment version.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--hidden_dim", type=int, default=16, help="The hidden dimension.",
|
||||
"--hidden_dim",
|
||||
type=int,
|
||||
default=16,
|
||||
help="The hidden dimension.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--meta_lr",
|
||||
@ -224,10 +230,16 @@ if __name__ == "__main__":
|
||||
help="The gap between prev_time and current_timestamp",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--meta_batch", type=int, default=64, help="The batch size for the meta-model",
|
||||
"--meta_batch",
|
||||
type=int,
|
||||
default=64,
|
||||
help="The batch size for the meta-model",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--epochs", type=int, default=2000, help="The total number of epochs.",
|
||||
"--epochs",
|
||||
type=int,
|
||||
default=2000,
|
||||
help="The total number of epochs.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--early_stop_thresh",
|
||||
|
@ -149,7 +149,10 @@ if __name__ == "__main__":
|
||||
help="The synthetic enviornment version.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--hidden_dim", type=int, required=True, help="The hidden dimension.",
|
||||
"--hidden_dim",
|
||||
type=int,
|
||||
required=True,
|
||||
help="The hidden dimension.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--init_lr",
|
||||
@ -164,10 +167,16 @@ if __name__ == "__main__":
|
||||
help="The gap between prev_time and current_timestamp",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--batch_size", type=int, default=512, help="The batch size",
|
||||
"--batch_size",
|
||||
type=int,
|
||||
default=512,
|
||||
help="The batch size",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--epochs", type=int, default=300, help="The total number of epochs.",
|
||||
"--epochs",
|
||||
type=int,
|
||||
default=300,
|
||||
help="The total number of epochs.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--workers",
|
||||
|
@ -149,7 +149,10 @@ if __name__ == "__main__":
|
||||
help="The synthetic enviornment version.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--hidden_dim", type=int, required=True, help="The hidden dimension.",
|
||||
"--hidden_dim",
|
||||
type=int,
|
||||
required=True,
|
||||
help="The hidden dimension.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--init_lr",
|
||||
@ -158,10 +161,16 @@ if __name__ == "__main__":
|
||||
help="The initial learning rate for the optimizer (default is Adam)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--batch_size", type=int, default=512, help="The batch size",
|
||||
"--batch_size",
|
||||
type=int,
|
||||
default=512,
|
||||
help="The batch size",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--epochs", type=int, default=300, help="The total number of epochs.",
|
||||
"--epochs",
|
||||
type=int,
|
||||
default=300,
|
||||
help="The total number of epochs.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--workers",
|
||||
|
@ -62,7 +62,10 @@ def main(args):
|
||||
)
|
||||
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
|
||||
optimizer,
|
||||
milestones=[int(args.epochs * 0.8), int(args.epochs * 0.9),],
|
||||
milestones=[
|
||||
int(args.epochs * 0.8),
|
||||
int(args.epochs * 0.9),
|
||||
],
|
||||
gamma=0.1,
|
||||
)
|
||||
|
||||
@ -170,7 +173,10 @@ if __name__ == "__main__":
|
||||
help="The synthetic enviornment version.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--hidden_dim", type=int, required=True, help="The hidden dimension.",
|
||||
"--hidden_dim",
|
||||
type=int,
|
||||
required=True,
|
||||
help="The hidden dimension.",
|
||||
)
|
||||
#####
|
||||
parser.add_argument(
|
||||
@ -180,7 +186,10 @@ if __name__ == "__main__":
|
||||
help="The initial learning rate for the optimizer (default is Adam)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--meta_batch", type=int, default=64, help="The batch size for the meta-model",
|
||||
"--meta_batch",
|
||||
type=int,
|
||||
default=64,
|
||||
help="The batch size for the meta-model",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--early_stop_thresh",
|
||||
@ -189,13 +198,22 @@ if __name__ == "__main__":
|
||||
help="The maximum epochs for early stop.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--epochs", type=int, default=2000, help="The total number of epochs.",
|
||||
"--epochs",
|
||||
type=int,
|
||||
default=2000,
|
||||
help="The total number of epochs.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--per_epoch_step", type=int, default=20, help="The total number of epochs.",
|
||||
"--per_epoch_step",
|
||||
type=int,
|
||||
default=20,
|
||||
help="The total number of epochs.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--device", type=str, default="cpu", help="",
|
||||
"--device",
|
||||
type=str,
|
||||
default="cpu",
|
||||
help="",
|
||||
)
|
||||
# Random Seed
|
||||
parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")
|
||||
|
@ -101,7 +101,10 @@ def main(args):
|
||||
)
|
||||
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
|
||||
optimizer,
|
||||
milestones=[int(args.epochs * 0.8), int(args.epochs * 0.9),],
|
||||
milestones=[
|
||||
int(args.epochs * 0.8),
|
||||
int(args.epochs * 0.9),
|
||||
],
|
||||
gamma=0.1,
|
||||
)
|
||||
logger.log("The base-model is\n{:}".format(base_model))
|
||||
@ -240,13 +243,22 @@ if __name__ == "__main__":
|
||||
help="The synthetic enviornment version.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--hidden_dim", type=int, default=16, help="The hidden dimension.",
|
||||
"--hidden_dim",
|
||||
type=int,
|
||||
default=16,
|
||||
help="The hidden dimension.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--layer_dim", type=int, default=16, help="The layer chunk dimension.",
|
||||
"--layer_dim",
|
||||
type=int,
|
||||
default=16,
|
||||
help="The layer chunk dimension.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--time_dim", type=int, default=16, help="The timestamp dimension.",
|
||||
"--time_dim",
|
||||
type=int,
|
||||
default=16,
|
||||
help="The timestamp dimension.",
|
||||
)
|
||||
#####
|
||||
parser.add_argument(
|
||||
@ -262,7 +274,10 @@ if __name__ == "__main__":
|
||||
help="The weight decay for the optimizer (default is Adam)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--meta_batch", type=int, default=64, help="The batch size for the meta-model",
|
||||
"--meta_batch",
|
||||
type=int,
|
||||
default=64,
|
||||
help="The batch size for the meta-model",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--sampler_enlarge",
|
||||
@ -284,7 +299,10 @@ if __name__ == "__main__":
|
||||
"--workers", type=int, default=4, help="The number of workers in parallel."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--device", type=str, default="cpu", help="",
|
||||
"--device",
|
||||
type=str,
|
||||
default="cpu",
|
||||
help="",
|
||||
)
|
||||
# Random Seed
|
||||
parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")
|
||||
|
@ -75,7 +75,8 @@ class LFNA_Meta(super_core.SuperModule):
|
||||
|
||||
# unknown token
|
||||
self.register_parameter(
|
||||
"_unknown_token", torch.nn.Parameter(torch.Tensor(1, time_embedding)),
|
||||
"_unknown_token",
|
||||
torch.nn.Parameter(torch.Tensor(1, time_embedding)),
|
||||
)
|
||||
|
||||
# initialization
|
||||
|
@ -164,8 +164,10 @@ def compare_cl(save_dir):
|
||||
)
|
||||
print("Save all figures into {:}".format(save_dir))
|
||||
save_dir = save_dir.resolve()
|
||||
base_cmd = "ffmpeg -y -i {xdir}/%04d.png -vf fps=1 -vf scale=2200:1800 -vb 5000k".format(
|
||||
xdir=save_dir
|
||||
base_cmd = (
|
||||
"ffmpeg -y -i {xdir}/%04d.png -vf fps=1 -vf scale=2200:1800 -vb 5000k".format(
|
||||
xdir=save_dir
|
||||
)
|
||||
)
|
||||
video_cmd = "{:} -pix_fmt yuv420p {xdir}/compare-cl.mp4".format(
|
||||
base_cmd, xdir=save_dir
|
||||
|
Loading…
Reference in New Issue
Block a user