update README
This commit is contained in:
		| @@ -39,7 +39,7 @@ At the moment, this project provides the following algorithms and scripts to run | ||||
|     <tr> <!-- (2-nd row) --> | ||||
|     <td align="center" valign="middle"> DARTS </td> | ||||
|     <td align="center" valign="middle"> DARTS: Differentiable Architecture Search </td> | ||||
|     <td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/master/docs/NAS-Bench-201.md">NAS-Bench-201.md</a> </td> | ||||
|     <td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/master/docs/ICLR-2019-DARTS.md">ICLR-2019-DARTS.md</a> </td> | ||||
|     </tr> | ||||
|     <tr> <!-- (3-nd row) --> | ||||
|     <td align="center" valign="middle"> GDAS </td> | ||||
|   | ||||
							
								
								
									
										22
									
								
								docs/ICLR-2019-DARTS.md
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										22
									
								
								docs/ICLR-2019-DARTS.md
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,22 @@ | ||||
| # DARTS: Differentiable Architecture Search | ||||
|  | ||||
| DARTS: Differentiable Architecture Search is accepted by ICLR 2019. | ||||
| In this paper, Hanxiao proposed a differentiable neural architecture search method, named as DARTS. | ||||
| Recently, DARTS becomes very popular due to its simplicity and performance. | ||||
|  | ||||
| **Run DARTS on the NAS-Bench-201 search space**: | ||||
| ``` | ||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V2.sh cifar10 1 -1 | ||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/GDAS.sh     cifar10 1 -1 | ||||
| ``` | ||||
|  | ||||
| # Citation | ||||
|  | ||||
| ``` | ||||
| @inproceedings{liu2019darts, | ||||
|   title     = {{DARTS}: Differentiable architecture search}, | ||||
|   author    = {Liu, Hanxiao and Simonyan, Karen and Yang, Yiming}, | ||||
|   booktitle = {International Conference on Learning Representations (ICLR)}, | ||||
|   year      = {2019} | ||||
| } | ||||
| ``` | ||||
| @@ -181,7 +181,7 @@ If researchers can provide better results with different hyper-parameters, we ar | ||||
| - [4] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/SETN.sh     cifar10 1 -1` | ||||
| - [5] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/ENAS.sh     cifar10 1 -1` | ||||
| - [6] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/RANDOM-NAS.sh cifar10 1 -1` | ||||
| - [7] `bash ./scripts-search/algos/R-EA.sh -1` | ||||
| - [7] `bash ./scripts-search/algos/R-EA.sh cifar10 3 -1` | ||||
| - [8] `bash ./scripts-search/algos/Random.sh -1` | ||||
| - [9] `bash ./scripts-search/algos/REINFORCE.sh 0.5 -1` | ||||
| - [10] `bash ./scripts-search/algos/BOHB.sh -1` | ||||
|   | ||||
| @@ -517,7 +517,7 @@ def just_show(api): | ||||
|     print ('[{:10s}-{:10s} ::: index={:5d}, accuracy={:.2f}'.format(dataset, metric_on_set, arch_index, highest_acc)) | ||||
|  | ||||
|  | ||||
| def show_nas_sharing_w(api, dataset, subset, vis_save_dir, file_name, y_lims, x_maxs): | ||||
| def show_nas_sharing_w(api, dataset, subset, vis_save_dir, sufix, file_name, y_lims, x_maxs): | ||||
|   color_set = ['r', 'b', 'g', 'c', 'm', 'y', 'k'] | ||||
|   dpi, width, height = 300, 3400, 2600 | ||||
|   LabelSize, LegendFontsize = 28, 28 | ||||
| @@ -533,13 +533,14 @@ def show_nas_sharing_w(api, dataset, subset, vis_save_dir, file_name, y_lims, x_ | ||||
|   plt.xlabel('The searching epoch', fontsize=LabelSize) | ||||
|   plt.ylabel('The accuracy (%)', fontsize=LabelSize) | ||||
|  | ||||
|   xpaths = {'RSPS'    : 'output/search-cell-nas-bench-201/RANDOM-NAS-cifar10/checkpoint/', | ||||
|             'DARTS-V1': 'output/search-cell-nas-bench-201/DARTS-V1-cifar10/checkpoint/', | ||||
|             'DARTS-V2': 'output/search-cell-nas-bench-201/DARTS-V2-cifar10/checkpoint/', | ||||
|             'GDAS'    : 'output/search-cell-nas-bench-201/GDAS-cifar10/checkpoint/', | ||||
|             'SETN'    : 'output/search-cell-nas-bench-201/SETN-cifar10/checkpoint/', | ||||
|             'ENAS'    : 'output/search-cell-nas-bench-201/ENAS-cifar10/checkpoint/', | ||||
|   xpaths = {'RSPS'    : 'output/search-cell-nas-bench-201/RANDOM-NAS-cifar10-{:}/checkpoint/'.format(sufix),  | ||||
|             'DARTS-V1': 'output/search-cell-nas-bench-201/DARTS-V1-cifar10-{:}/checkpoint/'.format(sufix), | ||||
|             'DARTS-V2': 'output/search-cell-nas-bench-201/DARTS-V2-cifar10-{:}/checkpoint/'.format(sufix), | ||||
|             'GDAS'    : 'output/search-cell-nas-bench-201/GDAS-cifar10-{:}/checkpoint/'.format(sufix), | ||||
|             'SETN'    : 'output/search-cell-nas-bench-201/SETN-cifar10-{:}/checkpoint/'.format(sufix), | ||||
|             'ENAS'    : 'output/search-cell-nas-bench-201/ENAS-cifar10-{:}/checkpoint/'.format(sufix), | ||||
|            } | ||||
|   """ | ||||
|   xseeds = {'RSPS'    : [5349, 59613, 5983], | ||||
|             'DARTS-V1': [11416, 72873, 81184, 28640], | ||||
|             'DARTS-V2': [43330, 79405, 79423], | ||||
| @@ -547,6 +548,15 @@ def show_nas_sharing_w(api, dataset, subset, vis_save_dir, file_name, y_lims, x_ | ||||
|             'SETN'    : [20518, 61817, 89144], | ||||
|             'ENAS'    : [3231, 34238, 96929], | ||||
|            } | ||||
|   """ | ||||
|   xseeds = {'RSPS'    : [23814, 28015, 95809], | ||||
|             'DARTS-V1': [48349, 80877, 81920], | ||||
|             'DARTS-V2': [61712, 7941 , 87041] , | ||||
|             'GDAS'    : [72818, 72996, 78877], | ||||
|             'SETN'    : [26985, 55206, 95404], | ||||
|             'ENAS'    : [21792, 36605, 45029] | ||||
|            } | ||||
|  | ||||
|  | ||||
|   def get_accs(xdata): | ||||
|     epochs, xresults = xdata['epoch'], [] | ||||
| @@ -579,12 +589,13 @@ def show_nas_sharing_w(api, dataset, subset, vis_save_dir, file_name, y_lims, x_ | ||||
|     plt.fill_between(epochs, [accyss[:,i].mean()-accyss[:,i].std() for i in epochs], [accyss[:,i].mean()+accyss[:,i].std() for i in epochs], alpha=0.2, color=color_set[idx]) | ||||
|   #plt.legend(loc=4, fontsize=LegendFontsize) | ||||
|   plt.legend(loc=0, fontsize=LegendFontsize) | ||||
|   save_path = vis_save_dir / '{:}-{:}-{:}-{:}'.format(xox, dataset, subset, file_name) | ||||
|   save_path = vis_save_dir / '{:}.pdf'.format(file_name) | ||||
|   print('save figure into {:}\n'.format(save_path)) | ||||
|   fig.savefig(str(save_path), dpi=dpi, bbox_inches='tight', format='pdf') | ||||
|  | ||||
|  | ||||
| def show_nas_sharing_w_v2(api, data_sub_a, data_sub_b, vis_save_dir, file_name, y_lims, x_maxs): | ||||
|  | ||||
| def show_nas_sharing_w_v2(api, data_sub_a, data_sub_b, vis_save_dir, sufix, file_name, y_lims, x_maxs): | ||||
|   color_set = ['r', 'b', 'g', 'c', 'm', 'y', 'k'] | ||||
|   dpi, width, height = 300, 3400, 2600 | ||||
|   LabelSize, LegendFontsize = 28, 28 | ||||
| @@ -600,13 +611,14 @@ def show_nas_sharing_w_v2(api, data_sub_a, data_sub_b, vis_save_dir, file_name, | ||||
|   plt.xlabel('The searching epoch', fontsize=LabelSize) | ||||
|   plt.ylabel('The accuracy (%)', fontsize=LabelSize) | ||||
|  | ||||
|   xpaths = {'RSPS'    : 'output/search-cell-nas-bench-201/RANDOM-NAS-cifar10/checkpoint/', | ||||
|             'DARTS-V1': 'output/search-cell-nas-bench-201/DARTS-V1-cifar10/checkpoint/', | ||||
|             'DARTS-V2': 'output/search-cell-nas-bench-201/DARTS-V2-cifar10/checkpoint/', | ||||
|             'GDAS'    : 'output/search-cell-nas-bench-201/GDAS-cifar10/checkpoint/', | ||||
|             'SETN'    : 'output/search-cell-nas-bench-201/SETN-cifar10/checkpoint/', | ||||
|             'ENAS'    : 'output/search-cell-nas-bench-201/ENAS-cifar10/checkpoint/', | ||||
|   xpaths = {'RSPS'    : 'output/search-cell-nas-bench-201/RANDOM-NAS-cifar10-{:}/checkpoint/'.format(sufix),  | ||||
|             'DARTS-V1': 'output/search-cell-nas-bench-201/DARTS-V1-cifar10-{:}/checkpoint/'.format(sufix), | ||||
|             'DARTS-V2': 'output/search-cell-nas-bench-201/DARTS-V2-cifar10-{:}/checkpoint/'.format(sufix), | ||||
|             'GDAS'    : 'output/search-cell-nas-bench-201/GDAS-cifar10-{:}/checkpoint/'.format(sufix), | ||||
|             'SETN'    : 'output/search-cell-nas-bench-201/SETN-cifar10-{:}/checkpoint/'.format(sufix), | ||||
|             'ENAS'    : 'output/search-cell-nas-bench-201/ENAS-cifar10-{:}/checkpoint/'.format(sufix), | ||||
|            } | ||||
|   """ | ||||
|   xseeds = {'RSPS'    : [5349, 59613, 5983], | ||||
|             'DARTS-V1': [11416, 72873, 81184, 28640], | ||||
|             'DARTS-V2': [43330, 79405, 79423], | ||||
| @@ -614,6 +626,15 @@ def show_nas_sharing_w_v2(api, data_sub_a, data_sub_b, vis_save_dir, file_name, | ||||
|             'SETN'    : [20518, 61817, 89144], | ||||
|             'ENAS'    : [3231, 34238, 96929], | ||||
|            } | ||||
|   """ | ||||
|   xseeds = {'RSPS'    : [23814, 28015, 95809], | ||||
|             'DARTS-V1': [48349, 80877, 81920], | ||||
|             'DARTS-V2': [61712, 7941 , 87041] , | ||||
|             'GDAS'    : [72818, 72996, 78877], | ||||
|             'SETN'    : [26985, 55206, 95404], | ||||
|             'ENAS'    : [21792, 36605, 45029] | ||||
|            } | ||||
|  | ||||
|  | ||||
|   def get_accs(xdata, dataset, subset): | ||||
|     epochs, xresults = xdata['epoch'], [] | ||||
| @@ -643,8 +664,15 @@ def show_nas_sharing_w_v2(api, data_sub_a, data_sub_b, vis_save_dir, file_name, | ||||
|     accyss_B = np.array( [get_accs(xdatas, data_sub_b[0], data_sub_b[1]) for xdatas in all_datas] ) | ||||
|     epochs = list(range(accyss_A.shape[1])) | ||||
|     for j, accyss in enumerate([accyss_A, accyss_B]): | ||||
|       plt.plot(epochs, [accyss[:,i].mean() for i in epochs], color=color_set[idx*2+j], linestyle='-' if j==0 else '--', label='{:} ({:})'.format(method, 'VALID' if j == 0 else 'TEST'), lw=2, alpha=0.9) | ||||
|       plt.fill_between(epochs, [accyss[:,i].mean()-accyss[:,i].std() for i in epochs], [accyss[:,i].mean()+accyss[:,i].std() for i in epochs], alpha=0.2, color=color_set[idx*2+j]) | ||||
|       if x_maxs == 50: | ||||
|         color, line = color_set[idx*2+j], '-' if j==0 else '--' | ||||
|       elif x_maxs == 250: | ||||
|         color, line = color_set[idx], '-' if j==0 else '--' | ||||
|       else: raise ValueError('invalid x-maxs={:}'.format(x_maxs)) | ||||
|       plt.plot(epochs, [accyss[:,i].mean() for i in epochs], color=color, linestyle=line, label='{:} ({:})'.format(method, 'VALID' if j == 0 else 'TEST'), lw=2, alpha=0.9) | ||||
|       plt.fill_between(epochs, [accyss[:,i].mean()-accyss[:,i].std() for i in epochs], [accyss[:,i].mean()+accyss[:,i].std() for i in epochs], alpha=0.2, color=color) | ||||
|       setname = data_sub_a if j == 0 else data_sub_b | ||||
|       print('{:} -- {:} ---- {:.2f}$\\pm${:.2f}'.format(method, setname, accyss[:,-1].mean(), accyss[:,-1].std())) | ||||
|   #plt.legend(loc=4, fontsize=LegendFontsize) | ||||
|   plt.legend(loc=0, fontsize=LegendFontsize) | ||||
|   save_path = vis_save_dir / '{:}-{:}'.format(xox, file_name) | ||||
| @@ -654,7 +682,7 @@ def show_nas_sharing_w_v2(api, data_sub_a, data_sub_b, vis_save_dir, file_name, | ||||
|  | ||||
| def show_reinforce(api, root, dataset, xset, file_name, y_lims): | ||||
|   print ('root-path={:}, dataset={:}, xset={:}'.format(root, dataset, xset)) | ||||
|   LRs = ['0.01', '0.02', '0.1', '0.2', '0.5', '1.0', '1.5', '2.0', '2.5', '3.0'] | ||||
|   LRs = ['0.01', '0.02', '0.1', '0.2', '0.5'] | ||||
|   checkpoints = ['./output/search-cell-nas-bench-201/REINFORCE-cifar10-{:}/results.pth'.format(x) for x in LRs] | ||||
|   acc_lr_dict, indexes = {}, None | ||||
|   for lr, checkpoint in zip(LRs, checkpoints): | ||||
| @@ -684,7 +712,8 @@ def show_reinforce(api, root, dataset, xset, file_name, y_lims): | ||||
|  | ||||
|   for idx, LR in enumerate(LRs): | ||||
|     legend = 'LR={:.2f}'.format(float(LR)) | ||||
|     color, linestyle = color_set[idx // 2], '-' if idx % 2 == 0 else '-.' | ||||
|     #color, linestyle = color_set[idx // 2], '-' if idx % 2 == 0 else '-.' | ||||
|     color, linestyle = color_set[idx], '-' | ||||
|     plt.plot(indexes, acc_lr_dict[LR], color=color, linestyle=linestyle, label=legend, lw=2, alpha=0.8) | ||||
|     print ('{:} : mean = {:}, std = {:} :: {:.2f}$\\pm${:.2f}'.format(legend, np.mean(acc_lr_dict[LR]), np.std(acc_lr_dict[LR]), np.mean(acc_lr_dict[LR]), np.std(acc_lr_dict[LR]))) | ||||
|   plt.legend(loc=4, fontsize=LegendFontsize) | ||||
| @@ -693,6 +722,49 @@ def show_reinforce(api, root, dataset, xset, file_name, y_lims): | ||||
|   fig.savefig(str(save_path), dpi=dpi, bbox_inches='tight', format='pdf') | ||||
|  | ||||
|  | ||||
|  | ||||
| def show_rea(api, root, dataset, xset, file_name, y_lims): | ||||
|   print ('root-path={:}, dataset={:}, xset={:}'.format(root, dataset, xset)) | ||||
|   SSs = [3, 5, 10] | ||||
|   checkpoints = ['./output/search-cell-nas-bench-201/R-EA-cifar10-SS{:}/results.pth'.format(x) for x in SSs] | ||||
|   acc_ss_dict, indexes = {}, None | ||||
|   for ss, checkpoint in zip(SSs, checkpoints): | ||||
|     all_indexes, accuracies = torch.load(checkpoint, map_location='cpu'), [] | ||||
|     for x in all_indexes: | ||||
|       info = api.arch2infos_full[ x ] | ||||
|       metrics = info.get_metrics(dataset, xset, None, False) | ||||
|       accuracies.append( metrics['accuracy'] ) | ||||
|     if indexes is None: indexes = list(range(len(accuracies))) | ||||
|     acc_ss_dict[ss] = np.array( sorted(accuracies) ) | ||||
|     print ('Sample-Size={:2d}, mean={:}, std={:}'.format(ss, acc_ss_dict[ss].mean(), acc_ss_dict[ss].std())) | ||||
|    | ||||
|   color_set = ['r', 'b', 'g', 'c', 'm', 'y', 'k'] | ||||
|   dpi, width, height = 300, 3400, 2600 | ||||
|   LabelSize, LegendFontsize = 28, 22 | ||||
|   figsize = width / float(dpi), height / float(dpi) | ||||
|   fig = plt.figure(figsize=figsize) | ||||
|   x_axis = np.arange(0, 600) | ||||
|   plt.xlim(0, max(indexes)) | ||||
|   plt.ylim(y_lims[0], y_lims[1]) | ||||
|   interval_x, interval_y = 100, y_lims[2] | ||||
|   plt.xticks(np.arange(0, max(indexes), interval_x), fontsize=LegendFontsize) | ||||
|   plt.yticks(np.arange(y_lims[0],y_lims[1], interval_y), fontsize=LegendFontsize) | ||||
|   plt.grid() | ||||
|   plt.xlabel('The index of runs', fontsize=LabelSize) | ||||
|   plt.ylabel('The accuracy (%)', fontsize=LabelSize) | ||||
|  | ||||
|   for idx, ss in enumerate(SSs): | ||||
|     legend = 'sample-size={:2d}'.format(ss) | ||||
|     #color, linestyle = color_set[idx // 2], '-' if idx % 2 == 0 else '-.' | ||||
|     color, linestyle = color_set[idx], '-' | ||||
|     plt.plot(indexes, acc_ss_dict[ss], color=color, linestyle=linestyle, label=legend, lw=2, alpha=0.8) | ||||
|     print ('{:} : mean = {:}, std = {:} :: {:.2f}$\\pm${:.2f}'.format(legend, np.mean(acc_ss_dict[ss]), np.std(acc_ss_dict[ss]), np.mean(acc_ss_dict[ss]), np.std(acc_ss_dict[ss]))) | ||||
|   plt.legend(loc=4, fontsize=LegendFontsize) | ||||
|   save_path = root / '{:}-{:}-{:}.pdf'.format(dataset, xset, file_name) | ||||
|   print('save figure into {:}\n'.format(save_path)) | ||||
|   fig.savefig(str(save_path), dpi=dpi, bbox_inches='tight', format='pdf') | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|  | ||||
|   parser = argparse.ArgumentParser(description='NAS-Bench-201', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
| @@ -712,9 +784,25 @@ if __name__ == '__main__': | ||||
|   #visualize_relative_ranking(vis_save_dir) | ||||
|  | ||||
|   api = API(args.api_path) | ||||
|   show_reinforce(api, vis_save_dir, 'cifar10-valid' , 'x-valid', 'REINFORCE-CIFAR-10', (75, 95, 5)) | ||||
|   import pdb; pdb.set_trace() | ||||
|   #show_reinforce(api, vis_save_dir, 'cifar10-valid' , 'x-valid', 'REINFORCE-CIFAR-10', (85, 92, 2)) | ||||
|   #show_rea      (api, vis_save_dir, 'cifar10-valid' , 'x-valid', 'REA-CIFAR-10', (88, 92, 1)) | ||||
|  | ||||
|   #plot_results_nas_v2(api, ('cifar10-valid' , 'x-valid'), ('cifar10'       , 'ori-test'), vis_save_dir, 'nas-com-v2-cifar010.pdf', (85,95, 1)) | ||||
|   #plot_results_nas_v2(api, ('cifar100'      , 'x-valid'), ('cifar100'      , 'x-test'  ), vis_save_dir, 'nas-com-v2-cifar100.pdf', (60,75, 3)) | ||||
|   #plot_results_nas_v2(api, ('ImageNet16-120', 'x-valid'), ('ImageNet16-120', 'x-test'  ), vis_save_dir, 'nas-com-v2-imagenet.pdf', (35,48, 2)) | ||||
|  | ||||
|   show_nas_sharing_w_v2(api, ('cifar10-valid' , 'x-valid'), ('cifar10'       , 'ori-test') , vis_save_dir, 'BN0', 'BN0-DARTS-CIFAR010.pdf', (0, 100,10), 50) | ||||
|   show_nas_sharing_w_v2(api, ('cifar100'      , 'x-valid'), ('cifar100'      , 'x-test'  ) , vis_save_dir, 'BN0', 'BN0-DARTS-CIFAR100.pdf', (0, 100,10), 50) | ||||
|   show_nas_sharing_w_v2(api, ('ImageNet16-120', 'x-valid'), ('ImageNet16-120', 'x-test'  ) , vis_save_dir, 'BN0', 'BN0-DARTS-ImageNet.pdf', (0, 100,10), 50) | ||||
|  | ||||
|   show_nas_sharing_w_v2(api, ('cifar10-valid' , 'x-valid'), ('cifar10'       , 'ori-test') , vis_save_dir, 'BN0', 'BN0-OTHER-CIFAR010.pdf', (0, 100,10), 250) | ||||
|   show_nas_sharing_w_v2(api, ('cifar100'      , 'x-valid'), ('cifar100'      , 'x-test'  ) , vis_save_dir, 'BN0', 'BN0-OTHER-CIFAR100.pdf', (0, 100,10), 250) | ||||
|   show_nas_sharing_w_v2(api, ('ImageNet16-120', 'x-valid'), ('ImageNet16-120', 'x-test'  ) , vis_save_dir, 'BN0', 'BN0-OTHER-ImageNet.pdf', (0, 100,10), 250) | ||||
|  | ||||
|   show_nas_sharing_w(api, 'cifar10-valid' , 'x-valid' , vis_save_dir, 'BN0', 'BN0-XX-CIFAR010-VALID.pdf', (0, 100,10), 250) | ||||
|   show_nas_sharing_w(api, 'cifar10'       , 'ori-test', vis_save_dir, 'BN0', 'BN0-XX-CIFAR010-TEST.pdf' , (0, 100,10), 250) | ||||
|   import pdb; pdb.set_trace() | ||||
|   """ | ||||
|   for x_maxs in [50, 250]: | ||||
|     show_nas_sharing_w(api, 'cifar10-valid' , 'x-valid' , vis_save_dir, 'nas-plot.pdf', (0, 100,10), x_maxs) | ||||
|     show_nas_sharing_w(api, 'cifar10'       , 'ori-test', vis_save_dir, 'nas-plot.pdf', (0, 100,10), x_maxs) | ||||
| @@ -724,17 +812,11 @@ if __name__ == '__main__': | ||||
|     show_nas_sharing_w(api, 'ImageNet16-120', 'x-test'  , vis_save_dir, 'nas-plot.pdf', (0, 100,10), x_maxs) | ||||
|    | ||||
|   show_nas_sharing_w_v2(api, ('cifar10-valid' , 'x-valid'), ('cifar10'       , 'ori-test') , vis_save_dir, 'DARTS-CIFAR010.pdf', (0, 100,10), 50) | ||||
|   show_nas_sharing_w_v2(api, ('cifar100'      , 'x-valid'), ('cifar100'      , 'x-test'  ) , vis_save_dir, 'DARTS-CIFAR100.pdf', (0, 100,10), 50) | ||||
|   show_nas_sharing_w_v2(api, ('ImageNet16-120', 'x-valid'), ('ImageNet16-120', 'x-test'  ) , vis_save_dir, 'DARTS-ImageNet.pdf', (0, 100,10), 50) | ||||
|   #just_show(api) | ||||
|   """ | ||||
|   just_show(api) | ||||
|   plot_results_nas(api, 'cifar10-valid' , 'x-valid' , vis_save_dir, 'nas-com.pdf', (85,95, 1)) | ||||
|   plot_results_nas(api, 'cifar10'       , 'ori-test', vis_save_dir, 'nas-com.pdf', (85,95, 1)) | ||||
|   plot_results_nas(api, 'cifar100'      , 'x-valid' , vis_save_dir, 'nas-com.pdf', (55,75, 3)) | ||||
|   plot_results_nas(api, 'cifar100'      , 'x-test'  , vis_save_dir, 'nas-com.pdf', (55,75, 3)) | ||||
|   plot_results_nas(api, 'ImageNet16-120', 'x-valid' , vis_save_dir, 'nas-com.pdf', (35,50, 3)) | ||||
|   plot_results_nas(api, 'ImageNet16-120', 'x-test'  , vis_save_dir, 'nas-com.pdf', (35,50, 3)) | ||||
|   plot_results_nas_v2(api, ('cifar10-valid' , 'x-valid'), ('cifar10'       , 'ori-test'), vis_save_dir, 'nas-com-v2-cifar010.pdf', (85,95, 1)) | ||||
|   plot_results_nas_v2(api, ('cifar100'      , 'x-valid'), ('cifar100'      , 'x-test'  ), vis_save_dir, 'nas-com-v2-cifar100.pdf', (60,75, 3)) | ||||
|   plot_results_nas_v2(api, ('ImageNet16-120', 'x-valid'), ('ImageNet16-120', 'x-test'  ), vis_save_dir, 'nas-com-v2-imagenet.pdf', (35,48, 2)) | ||||
|   """ | ||||
|   | ||||
| @@ -33,13 +33,38 @@ class Model(object): | ||||
|  | ||||
| # This function is to mimic the training and evaluatinig procedure for a single architecture `arch`. | ||||
| # The time_cost is calculated as the total training time for a few (e.g., 12 epochs) plus the evaluation time for one epoch. | ||||
| def train_and_eval(arch, nas_bench, extra_info): | ||||
|   if nas_bench is not None: | ||||
| # For use_converged_LR = True, the architecture is trained for 12 epochs, with LR being decaded from 0.1 to 0. | ||||
| #       In this case, the LR schedular is converged. | ||||
| # For use_converged_LR = False, the architecture is planed to be trained for 200 epochs, but we early stop its procedure. | ||||
| #        | ||||
| def train_and_eval(arch, nas_bench, extra_info, dataname='cifar10-valid', use_converged_LR=True): | ||||
|   if use_converged_LR and nas_bench is not None: | ||||
|     arch_index = nas_bench.query_index_by_arch( arch ) | ||||
|     assert arch_index >= 0, 'can not find this arch : {:}'.format(arch) | ||||
|     info = nas_bench.get_more_info(arch_index, 'cifar10-valid', None, True) | ||||
|     info = nas_bench.get_more_info(arch_index, dataname, None, True) | ||||
|     valid_acc, time_cost = info['valid-accuracy'], info['train-all-time'] + info['valid-per-time'] | ||||
|     #_, valid_acc = info.get_metrics('cifar10-valid', 'x-valid' , 25, True) # use the validation accuracy after 25 training epochs | ||||
|   elif not use_converged_LR and nas_bench is not None: | ||||
|     # Please use `use_converged_LR=False` for cifar10 only. | ||||
|     # It did return values for cifar100 and ImageNet16-120, but it has some potential issues. (Please email me for more details) | ||||
|     arch_index, nepoch = nas_bench.query_index_by_arch( arch ), 25 | ||||
|     assert arch_index >= 0, 'can not find this arch : {:}'.format(arch) | ||||
|     xoinfo = nas_bench.get_more_info(arch_index, 'cifar10-valid', None, True) | ||||
|     xocost = nas_bench.get_cost_info(arch_index, 'cifar10-valid', False) | ||||
|     info = nas_bench.get_more_info(arch_index, dataname, nepoch, False, True) # use the validation accuracy after 25 training epochs, which is used in our ICLR submission (not the camera ready). | ||||
|     cost = nas_bench.get_cost_info(arch_index, dataname, False) | ||||
|     # The following codes are used to estimate the time cost. | ||||
|     # When we build NAS-Bench-201, architectures are trained on different machines and we can not use that time record. | ||||
|     # When we create checkpoints for converged_LR, we run all experiments on 1080Ti, and thus the time for each architecture can be fairly compared. | ||||
|     nums = {'ImageNet16-120-train': 151700, 'ImageNet16-120-valid': 3000, | ||||
|             'cifar10-valid-train' : 25000,  'cifar10-valid-valid' : 25000, | ||||
|             'cifar100-train'      : 50000,  'cifar100-valid'      : 5000} | ||||
|     estimated_train_cost = xoinfo['train-per-time'] / nums['cifar10-valid-train'] * nums['{:}-train'.format(dataname)] / xocost['latency'] * cost['latency'] * nepoch | ||||
|     estimated_valid_cost = xoinfo['valid-per-time'] / nums['cifar10-valid-valid'] * nums['{:}-valid'.format(dataname)] / xocost['latency'] * cost['latency'] | ||||
|     try: | ||||
|       valid_acc, time_cost = info['valid-accuracy'], estimated_train_cost + estimated_valid_cost | ||||
|     except: | ||||
|       valid_acc, time_cost = info['est-valid-accuracy'], estimated_train_cost + estimated_valid_cost | ||||
|   else: | ||||
|     # train a model from scratch. | ||||
|     raise ValueError('NOT IMPLEMENT YET') | ||||
| @@ -79,7 +104,7 @@ def mutate_arch_func(op_names): | ||||
|   return mutate_arch_func | ||||
|  | ||||
|  | ||||
| def regularized_evolution(cycles, population_size, sample_size, time_budget, random_arch, mutate_arch, nas_bench, extra_info): | ||||
| def regularized_evolution(cycles, population_size, sample_size, time_budget, random_arch, mutate_arch, nas_bench, extra_info, dataname): | ||||
|   """Algorithm for regularized evolution (i.e. aging evolution). | ||||
|    | ||||
|   Follows "Algorithm 1" in Real et al. "Regularized Evolution for Image | ||||
| @@ -150,6 +175,10 @@ def main(xargs, nas_bench): | ||||
|   logger = prepare_logger(args) | ||||
|  | ||||
|   assert xargs.dataset == 'cifar10', 'currently only support CIFAR-10' | ||||
|   if xargs.dataset == 'cifar10': | ||||
|     dataname = 'cifar10-valid' | ||||
|   else: | ||||
|     dataname = xargs.dataset | ||||
|   if xargs.data_path is not None: | ||||
|     train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1) | ||||
|     split_Fpath = 'configs/nas-benchmark/cifar-split.txt' | ||||
| @@ -182,7 +211,7 @@ def main(xargs, nas_bench): | ||||
|   x_start_time = time.time() | ||||
|   logger.log('{:} use nas_bench : {:}'.format(time_string(), nas_bench)) | ||||
|   logger.log('-'*30 + ' start searching with the time budget of {:} s'.format(xargs.time_budget)) | ||||
|   history, total_cost = regularized_evolution(xargs.ea_cycles, xargs.ea_population, xargs.ea_sample_size, xargs.time_budget, random_arch, mutate_arch, nas_bench if args.ea_fast_by_api else None, extra_info) | ||||
|   history, total_cost = regularized_evolution(xargs.ea_cycles, xargs.ea_population, xargs.ea_sample_size, xargs.time_budget, random_arch, mutate_arch, nas_bench if args.ea_fast_by_api else None, extra_info, dataname) | ||||
|   logger.log('{:} regularized_evolution finish with history of {:} arch with {:.1f} s (real-cost={:.2f} s).'.format(time_string(), len(history), total_cost, time.time()-x_start_time)) | ||||
|   best_arch = max(history, key=lambda i: i.accuracy) | ||||
|   best_arch = best_arch.arch | ||||
|   | ||||
| @@ -162,6 +162,13 @@ class NASBench201API(object): | ||||
|     archresult = arch2infos[index] | ||||
|     return archresult.get_net_param(dataset, seed) | ||||
|  | ||||
|   # obtain the cost metric for the `index`-th architecture on a dataset | ||||
|   def get_cost_info(self, index, dataset, use_12epochs_result=False): | ||||
|     if use_12epochs_result: basestr, arch2infos = '12epochs' , self.arch2infos_less | ||||
|     else                  : basestr, arch2infos = '200epochs', self.arch2infos_full | ||||
|     archresult = arch2infos[index] | ||||
|     return archresult.get_comput_costs(dataset) | ||||
|  | ||||
|   # obtain the metric for the `index`-th architecture | ||||
|   def get_more_info(self, index, dataset, iepoch=None, use_12epochs_result=False, is_random=True): | ||||
|     if use_12epochs_result: basestr, arch2infos = '12epochs' , self.arch2infos_less | ||||
| @@ -177,6 +184,7 @@ class NASBench201API(object): | ||||
|       total      = train_info['iepoch'] + 1 | ||||
|       xifo = {'train-loss'    : train_info['loss'], | ||||
|               'train-accuracy': train_info['accuracy'], | ||||
|               'train-per-time': None if train_info['all_time'] is None else train_info['all_time'] / total, | ||||
|               'train-all-time': train_info['all_time'], | ||||
|               'valid-loss'    : valid_info['loss'], | ||||
|               'valid-accuracy': valid_info['accuracy'], | ||||
| @@ -188,21 +196,32 @@ class NASBench201API(object): | ||||
|       return xifo | ||||
|     else: | ||||
|       train_info = archresult.get_metrics(dataset, 'train'   , iepoch=iepoch, is_random=is_random) | ||||
|       if dataset == 'cifar10': | ||||
|         test__info = archresult.get_metrics(dataset, 'ori-test', iepoch=iepoch, is_random=is_random) | ||||
|       else: | ||||
|         test__info = archresult.get_metrics(dataset, 'x-test', iepoch=iepoch, is_random=is_random) | ||||
|       try: | ||||
|         if dataset == 'cifar10': | ||||
|           test__info = archresult.get_metrics(dataset, 'ori-test', iepoch=iepoch, is_random=is_random) | ||||
|         else: | ||||
|           test__info = archresult.get_metrics(dataset, 'x-test', iepoch=iepoch, is_random=is_random) | ||||
|       except: | ||||
|         valid_info = None | ||||
|       try: | ||||
|         valid_info = archresult.get_metrics(dataset, 'x-valid', iepoch=iepoch, is_random=is_random) | ||||
|       except: | ||||
|         valid_info = None | ||||
|       try: | ||||
|         est_valid_info = archresult.get_metrics(dataset, 'ori-test', iepoch=iepoch, is_random=is_random) | ||||
|       except: | ||||
|         est_valid_info = None | ||||
|       xifo = {'train-loss'    : train_info['loss'], | ||||
|               'train-accuracy': train_info['accuracy'], | ||||
|               'test-loss'     : test__info['loss'], | ||||
|               'test-accuracy' : test__info['accuracy']} | ||||
|               'train-accuracy': train_info['accuracy']} | ||||
|       if valid_info is not None: | ||||
|         xifo['test-loss'] = test__info['loss'], | ||||
|         xifo['test-accuracy'] = test__info['accuracy'] | ||||
|       if valid_info is not None: | ||||
|         xifo['valid-loss'] = valid_info['loss'] | ||||
|         xifo['valid-accuracy'] = valid_info['accuracy'] | ||||
|       if est_valid_info is not None: | ||||
|         xifo['est-valid-loss'] = est_valid_info['loss'] | ||||
|         xifo['est-valid-accuracy'] = est_valid_info['accuracy'] | ||||
|       return xifo | ||||
|  | ||||
|   def show(self, index=-1): | ||||
|   | ||||
| @@ -1,7 +1,8 @@ | ||||
| #!/bin/bash | ||||
| echo script name: $0 | ||||
|  | ||||
| lrs="0.01 0.02 0.1 0.2 0.5 1.0 1.5 2.0 2.5 3.0" | ||||
| #lrs="0.01 0.02 0.1 0.2 0.5 1.0 1.5 2.0 2.5 3.0" | ||||
| lrs="0.01 0.02 0.1 0.2 0.5" | ||||
|  | ||||
| for lr in ${lrs} | ||||
| do | ||||
|   | ||||
| @@ -1,11 +1,11 @@ | ||||
| #!/bin/bash | ||||
| # Regularized Evolution for Image Classifier Architecture Search, AAAI 2019 | ||||
| # bash ./scripts-search/algos/R-EA.sh -1 | ||||
| # bash ./scripts-search/algos/R-EA.sh cifar10 3 -1 | ||||
| echo script name: $0 | ||||
| echo $# arguments | ||||
| if [ "$#" -ne 1 ] ;then | ||||
| if [ "$#" -ne 3 ] ;then | ||||
|   echo "Input illegal number of parameters " $# | ||||
|   echo "Need 1 parameters for seed" | ||||
|   echo "Need 3 parameters for the-dataset-name, the-ea-sample-size and the-seed" | ||||
|   exit 1 | ||||
| fi | ||||
| if [ "$TORCH_HOME" = "" ]; then | ||||
| @@ -15,14 +15,16 @@ else | ||||
|   echo "TORCH_HOME : $TORCH_HOME" | ||||
| fi | ||||
|  | ||||
| dataset=cifar10 | ||||
| seed=$1 | ||||
| #dataset=cifar10 | ||||
| dataset=$1 | ||||
| sample_size=$2 | ||||
| seed=$3 | ||||
| channel=16 | ||||
| num_cells=5 | ||||
| max_nodes=4 | ||||
| space=nas-bench-201 | ||||
|  | ||||
| save_dir=./output/search-cell-${space}/R-EA-${dataset} | ||||
| save_dir=./output/search-cell-${space}/R-EA-${dataset}-SS${sample_size} | ||||
|  | ||||
| OMP_NUM_THREADS=4 python ./exps/algos/R_EA.py \ | ||||
| 	--save_dir ${save_dir} --max_nodes ${max_nodes} --channel ${channel} --num_cells ${num_cells} \ | ||||
| @@ -30,5 +32,5 @@ OMP_NUM_THREADS=4 python ./exps/algos/R_EA.py \ | ||||
| 	--search_space_name ${space} \ | ||||
| 	--arch_nas_dataset ${TORCH_HOME}/NAS-Bench-201-v1_0-e61699.pth \ | ||||
| 	--time_budget 12000 \ | ||||
| 	--ea_cycles 100 --ea_population 10 --ea_sample_size 3 --ea_fast_by_api 1 \ | ||||
| 	--ea_cycles 200 --ea_population 10 --ea_sample_size ${sample_size} --ea_fast_by_api 1 \ | ||||
| 	--workers 4 --print_freq 200 --rand_seed ${seed} | ||||
|   | ||||
		Reference in New Issue
	
	Block a user