update README
This commit is contained in:
		| @@ -33,13 +33,38 @@ class Model(object): | ||||
|  | ||||
| # This function is to mimic the training and evaluatinig procedure for a single architecture `arch`. | ||||
| # The time_cost is calculated as the total training time for a few (e.g., 12 epochs) plus the evaluation time for one epoch. | ||||
| def train_and_eval(arch, nas_bench, extra_info): | ||||
|   if nas_bench is not None: | ||||
| # For use_converged_LR = True, the architecture is trained for 12 epochs, with LR being decaded from 0.1 to 0. | ||||
| #       In this case, the LR schedular is converged. | ||||
| # For use_converged_LR = False, the architecture is planed to be trained for 200 epochs, but we early stop its procedure. | ||||
| #        | ||||
| def train_and_eval(arch, nas_bench, extra_info, dataname='cifar10-valid', use_converged_LR=True): | ||||
|   if use_converged_LR and nas_bench is not None: | ||||
|     arch_index = nas_bench.query_index_by_arch( arch ) | ||||
|     assert arch_index >= 0, 'can not find this arch : {:}'.format(arch) | ||||
|     info = nas_bench.get_more_info(arch_index, 'cifar10-valid', None, True) | ||||
|     info = nas_bench.get_more_info(arch_index, dataname, None, True) | ||||
|     valid_acc, time_cost = info['valid-accuracy'], info['train-all-time'] + info['valid-per-time'] | ||||
|     #_, valid_acc = info.get_metrics('cifar10-valid', 'x-valid' , 25, True) # use the validation accuracy after 25 training epochs | ||||
|   elif not use_converged_LR and nas_bench is not None: | ||||
|     # Please use `use_converged_LR=False` for cifar10 only. | ||||
|     # It did return values for cifar100 and ImageNet16-120, but it has some potential issues. (Please email me for more details) | ||||
|     arch_index, nepoch = nas_bench.query_index_by_arch( arch ), 25 | ||||
|     assert arch_index >= 0, 'can not find this arch : {:}'.format(arch) | ||||
|     xoinfo = nas_bench.get_more_info(arch_index, 'cifar10-valid', None, True) | ||||
|     xocost = nas_bench.get_cost_info(arch_index, 'cifar10-valid', False) | ||||
|     info = nas_bench.get_more_info(arch_index, dataname, nepoch, False, True) # use the validation accuracy after 25 training epochs, which is used in our ICLR submission (not the camera ready). | ||||
|     cost = nas_bench.get_cost_info(arch_index, dataname, False) | ||||
|     # The following codes are used to estimate the time cost. | ||||
|     # When we build NAS-Bench-201, architectures are trained on different machines and we can not use that time record. | ||||
|     # When we create checkpoints for converged_LR, we run all experiments on 1080Ti, and thus the time for each architecture can be fairly compared. | ||||
|     nums = {'ImageNet16-120-train': 151700, 'ImageNet16-120-valid': 3000, | ||||
|             'cifar10-valid-train' : 25000,  'cifar10-valid-valid' : 25000, | ||||
|             'cifar100-train'      : 50000,  'cifar100-valid'      : 5000} | ||||
|     estimated_train_cost = xoinfo['train-per-time'] / nums['cifar10-valid-train'] * nums['{:}-train'.format(dataname)] / xocost['latency'] * cost['latency'] * nepoch | ||||
|     estimated_valid_cost = xoinfo['valid-per-time'] / nums['cifar10-valid-valid'] * nums['{:}-valid'.format(dataname)] / xocost['latency'] * cost['latency'] | ||||
|     try: | ||||
|       valid_acc, time_cost = info['valid-accuracy'], estimated_train_cost + estimated_valid_cost | ||||
|     except: | ||||
|       valid_acc, time_cost = info['est-valid-accuracy'], estimated_train_cost + estimated_valid_cost | ||||
|   else: | ||||
|     # train a model from scratch. | ||||
|     raise ValueError('NOT IMPLEMENT YET') | ||||
| @@ -79,7 +104,7 @@ def mutate_arch_func(op_names): | ||||
|   return mutate_arch_func | ||||
|  | ||||
|  | ||||
| def regularized_evolution(cycles, population_size, sample_size, time_budget, random_arch, mutate_arch, nas_bench, extra_info): | ||||
| def regularized_evolution(cycles, population_size, sample_size, time_budget, random_arch, mutate_arch, nas_bench, extra_info, dataname): | ||||
|   """Algorithm for regularized evolution (i.e. aging evolution). | ||||
|    | ||||
|   Follows "Algorithm 1" in Real et al. "Regularized Evolution for Image | ||||
| @@ -150,6 +175,10 @@ def main(xargs, nas_bench): | ||||
|   logger = prepare_logger(args) | ||||
|  | ||||
|   assert xargs.dataset == 'cifar10', 'currently only support CIFAR-10' | ||||
|   if xargs.dataset == 'cifar10': | ||||
|     dataname = 'cifar10-valid' | ||||
|   else: | ||||
|     dataname = xargs.dataset | ||||
|   if xargs.data_path is not None: | ||||
|     train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1) | ||||
|     split_Fpath = 'configs/nas-benchmark/cifar-split.txt' | ||||
| @@ -182,7 +211,7 @@ def main(xargs, nas_bench): | ||||
|   x_start_time = time.time() | ||||
|   logger.log('{:} use nas_bench : {:}'.format(time_string(), nas_bench)) | ||||
|   logger.log('-'*30 + ' start searching with the time budget of {:} s'.format(xargs.time_budget)) | ||||
|   history, total_cost = regularized_evolution(xargs.ea_cycles, xargs.ea_population, xargs.ea_sample_size, xargs.time_budget, random_arch, mutate_arch, nas_bench if args.ea_fast_by_api else None, extra_info) | ||||
|   history, total_cost = regularized_evolution(xargs.ea_cycles, xargs.ea_population, xargs.ea_sample_size, xargs.time_budget, random_arch, mutate_arch, nas_bench if args.ea_fast_by_api else None, extra_info, dataname) | ||||
|   logger.log('{:} regularized_evolution finish with history of {:} arch with {:.1f} s (real-cost={:.2f} s).'.format(time_string(), len(history), total_cost, time.time()-x_start_time)) | ||||
|   best_arch = max(history, key=lambda i: i.accuracy) | ||||
|   best_arch = best_arch.arch | ||||
|   | ||||
		Reference in New Issue
	
	Block a user