Update NATS-Bench (tss version 0.99)
This commit is contained in:
parent
8d64afd4a3
commit
bd9288f45d
@ -99,6 +99,12 @@ Some methods use knowledge distillation (KD), which require pre-trained models.
|
||||
|
||||
If you find that this project helps your research, please consider citing some of the following papers:
|
||||
```
|
||||
@article{dong2020nats,
|
||||
title={NATS-Bench: Benchmarking NAS algorithms for Architecture Topology and Size},
|
||||
author={Dong, Xuanyi and Liu, Lu and Musial, Katarzyna and Gabrys, Bogdan},
|
||||
journal={arXiv preprint arXiv:2009.00437},
|
||||
year={2020}
|
||||
}
|
||||
@inproceedings{dong2020nasbench201,
|
||||
title = {NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search},
|
||||
author = {Dong, Xuanyi and Yang, Yi},
|
||||
|
@ -99,6 +99,12 @@ Some methods use knowledge distillation (KD), which require pre-trained models.
|
||||
如果您发现该项目对您的科研或工程有帮助,请考虑引用下列的某些文献:
|
||||
```
|
||||
@inproceedings{dong2020nasbench201,
|
||||
@article{dong2020nats,
|
||||
title={NATS-Bench: Benchmarking NAS algorithms for Architecture Topology and Size},
|
||||
author={Dong, Xuanyi and Liu, Lu and Musial, Katarzyna and Gabrys, Bogdan},
|
||||
journal={arXiv preprint arXiv:2009.00437},
|
||||
year={2020}
|
||||
}
|
||||
title = {NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search},
|
||||
author = {Dong, Xuanyi and Yang, Yi},
|
||||
booktitle = {International Conference on Learning Representations (ICLR)},
|
||||
|
@ -77,17 +77,17 @@ def account_one_arch(arch_index: int, arch_str: Text, checkpoints: List[Text],
|
||||
|
||||
def correct_time_related_info(arch_index: int, arch_info_full: ArchResults, arch_info_less: ArchResults):
|
||||
# calibrate the latency based on NAS-Bench-201-v1_0-e61699.pth
|
||||
cifar010_latency = (api.get_latency(arch_index, 'cifar10-valid', False) + api.get_latency(arch_index, 'cifar10', False)) / 2
|
||||
cifar010_latency = (api.get_latency(arch_index, 'cifar10-valid', hp='200') + api.get_latency(arch_index, 'cifar10', hp='200')) / 2
|
||||
arch_info_full.reset_latency('cifar10-valid', None, cifar010_latency)
|
||||
arch_info_full.reset_latency('cifar10', None, cifar010_latency)
|
||||
arch_info_less.reset_latency('cifar10-valid', None, cifar010_latency)
|
||||
arch_info_less.reset_latency('cifar10', None, cifar010_latency)
|
||||
|
||||
cifar100_latency = api.get_latency(arch_index, 'cifar100', False)
|
||||
cifar100_latency = api.get_latency(arch_index, 'cifar100', hp='200')
|
||||
arch_info_full.reset_latency('cifar100', None, cifar100_latency)
|
||||
arch_info_less.reset_latency('cifar100', None, cifar100_latency)
|
||||
|
||||
image_latency = api.get_latency(arch_index, 'ImageNet16-120', False)
|
||||
image_latency = api.get_latency(arch_index, 'ImageNet16-120', hp='200')
|
||||
arch_info_full.reset_latency('ImageNet16-120', None, image_latency)
|
||||
arch_info_less.reset_latency('ImageNet16-120', None, image_latency)
|
||||
|
||||
|
@ -1,7 +1,7 @@
|
||||
##############################################################################
|
||||
# NATS-Bench: Benchmarking NAS algorithms for Architecture Topology and Size #
|
||||
##############################################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.07 #
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.08 #
|
||||
##############################################################################
|
||||
# This file is used to re-orangize all checkpoints (created by main-sss.py) #
|
||||
# into a single benchmark file. Besides, for each trial, we will merge the #
|
||||
@ -25,6 +25,7 @@ from nats_bench import pickle_save, pickle_load, ArchResults, ResultsCount
|
||||
from procedures import bench_pure_evaluate as pure_evaluate, get_nas_bench_loaders
|
||||
from utils import get_md5_file
|
||||
|
||||
|
||||
NATS_SSS_BASE_NAME = 'NATS-sss-v1_0' # 2020.08.28
|
||||
|
||||
|
||||
|
@ -85,13 +85,16 @@ def test_api(api, is_301=True):
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
# api201 = create('./output/NATS-Bench-topology/process-FULL', 'topology', fast_mode=True, verbose=True)
|
||||
for fast_mode in [True, False]:
|
||||
for verbose in [True, False]:
|
||||
api201 = create(None, 'tss', fast_mode=fast_mode, verbose=True)
|
||||
print('{:} create with fast_mode={:} and verbose={:}'.format(time_string(), fast_mode, verbose))
|
||||
test_api(api201, False)
|
||||
|
||||
for fast_mode in [True, False]:
|
||||
for verbose in [True, False]:
|
||||
print('{:} create with fast_mode={:} and verbose={:}'.format(time_string(), fast_mode, verbose))
|
||||
api301 = create(None, 'size', fast_mode=fast_mode, verbose=True)
|
||||
print('{:} --->>> {:}'.format(time_string(), api301))
|
||||
test_api(api301, True)
|
||||
|
||||
# api201 = create(None, 'topology', True) # use the default file path
|
||||
# test_api(api201, False)
|
||||
# print ('Test {:} done'.format(api201))
|
||||
|
262
exps/NATS-Bench/tss-collect.py
Normal file
262
exps/NATS-Bench/tss-collect.py
Normal file
@ -0,0 +1,262 @@
|
||||
##############################################################################
|
||||
# NATS-Bench: Benchmarking NAS algorithms for Architecture Topology and Size #
|
||||
##############################################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.08 #
|
||||
##############################################################################
|
||||
# This file is used to re-orangize all checkpoints (created by main-tss.py) #
|
||||
# into a single benchmark file. Besides, for each trial, we will merge the #
|
||||
# information of all its trials into a single file. #
|
||||
# #
|
||||
# Usage: #
|
||||
# python exps/NATS-Bench/tss-collect.py #
|
||||
##############################################################################
|
||||
import os, re, sys, time, random, argparse, collections
|
||||
import numpy as np
|
||||
from copy import deepcopy
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
from pathlib import Path
|
||||
from collections import defaultdict, OrderedDict
|
||||
from typing import Dict, Any, Text, List
|
||||
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
|
||||
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
|
||||
from log_utils import AverageMeter, time_string, convert_secs2time
|
||||
from config_utils import load_config, dict2config
|
||||
from datasets import get_datasets
|
||||
from models import CellStructure, get_cell_based_tiny_net, get_search_spaces
|
||||
from nats_bench import pickle_save, pickle_load, ArchResults, ResultsCount
|
||||
from procedures import bench_pure_evaluate as pure_evaluate, get_nas_bench_loaders
|
||||
from nas_201_api import NASBench201API
|
||||
|
||||
|
||||
api = NASBench201API('{:}/.torch/NAS-Bench-201-v1_0-e61699.pth'.format(os.environ['HOME']))
|
||||
|
||||
NATS_TSS_BASE_NAME = 'NATS-tss-v1_0' # 2020.08.28
|
||||
|
||||
|
||||
def create_result_count(used_seed: int, dataset: Text, arch_config: Dict[Text, Any],
|
||||
results: Dict[Text, Any], dataloader_dict: Dict[Text, Any]) -> ResultsCount:
|
||||
xresult = ResultsCount(dataset, results['net_state_dict'], results['train_acc1es'], results['train_losses'],
|
||||
results['param'], results['flop'], arch_config, used_seed, results['total_epoch'], None)
|
||||
net_config = dict2config({'name': 'infer.tiny', 'C': arch_config['channel'], 'N': arch_config['num_cells'], 'genotype': CellStructure.str2structure(arch_config['arch_str']), 'num_classes': arch_config['class_num']}, None)
|
||||
if 'train_times' in results: # new version
|
||||
xresult.update_train_info(results['train_acc1es'], results['train_acc5es'], results['train_losses'], results['train_times'])
|
||||
xresult.update_eval(results['valid_acc1es'], results['valid_losses'], results['valid_times'])
|
||||
else:
|
||||
network = get_cell_based_tiny_net(net_config)
|
||||
network.load_state_dict(xresult.get_net_param())
|
||||
if dataset == 'cifar10-valid':
|
||||
xresult.update_OLD_eval('x-valid' , results['valid_acc1es'], results['valid_losses'])
|
||||
loss, top1, top5, latencies = pure_evaluate(dataloader_dict['{:}@{:}'.format('cifar10', 'test')], network.cuda())
|
||||
xresult.update_OLD_eval('ori-test', {results['total_epoch']-1: top1}, {results['total_epoch']-1: loss})
|
||||
xresult.update_latency(latencies)
|
||||
elif dataset == 'cifar10':
|
||||
xresult.update_OLD_eval('ori-test', results['valid_acc1es'], results['valid_losses'])
|
||||
loss, top1, top5, latencies = pure_evaluate(dataloader_dict['{:}@{:}'.format(dataset, 'test')], network.cuda())
|
||||
xresult.update_latency(latencies)
|
||||
elif dataset == 'cifar100' or dataset == 'ImageNet16-120':
|
||||
xresult.update_OLD_eval('ori-test', results['valid_acc1es'], results['valid_losses'])
|
||||
loss, top1, top5, latencies = pure_evaluate(dataloader_dict['{:}@{:}'.format(dataset, 'valid')], network.cuda())
|
||||
xresult.update_OLD_eval('x-valid', {results['total_epoch']-1: top1}, {results['total_epoch']-1: loss})
|
||||
loss, top1, top5, latencies = pure_evaluate(dataloader_dict['{:}@{:}'.format(dataset, 'test')], network.cuda())
|
||||
xresult.update_OLD_eval('x-test' , {results['total_epoch']-1: top1}, {results['total_epoch']-1: loss})
|
||||
xresult.update_latency(latencies)
|
||||
else:
|
||||
raise ValueError('invalid dataset name : {:}'.format(dataset))
|
||||
return xresult
|
||||
|
||||
|
||||
def account_one_arch(arch_index, arch_str, checkpoints, datasets, dataloader_dict):
|
||||
information = ArchResults(arch_index, arch_str)
|
||||
|
||||
for checkpoint_path in checkpoints:
|
||||
checkpoint = torch.load(checkpoint_path, map_location='cpu')
|
||||
used_seed = checkpoint_path.name.split('-')[-1].split('.')[0]
|
||||
ok_dataset = 0
|
||||
for dataset in datasets:
|
||||
if dataset not in checkpoint:
|
||||
print('Can not find {:} in arch-{:} from {:}'.format(dataset, arch_index, checkpoint_path))
|
||||
continue
|
||||
else:
|
||||
ok_dataset += 1
|
||||
results = checkpoint[dataset]
|
||||
assert results['finish-train'], 'This {:} arch seed={:} does not finish train on {:} ::: {:}'.format(arch_index, used_seed, dataset, checkpoint_path)
|
||||
arch_config = {'channel': results['channel'], 'num_cells': results['num_cells'], 'arch_str': arch_str, 'class_num': results['config']['class_num']}
|
||||
|
||||
xresult = create_result_count(used_seed, dataset, arch_config, results, dataloader_dict)
|
||||
information.update(dataset, int(used_seed), xresult)
|
||||
if ok_dataset == 0: raise ValueError('{:} does not find any data'.format(checkpoint_path))
|
||||
return information
|
||||
|
||||
|
||||
def correct_time_related_info(arch_index: int, arch_infos: Dict[Text, ArchResults]):
|
||||
# calibrate the latency based on NAS-Bench-201-v1_0-e61699.pth
|
||||
cifar010_latency = (api.get_latency(arch_index, 'cifar10-valid', hp='200') + api.get_latency(arch_index, 'cifar10', hp='200')) / 2
|
||||
cifar100_latency = api.get_latency(arch_index, 'cifar100', hp='200')
|
||||
image_latency = api.get_latency(arch_index, 'ImageNet16-120', hp='200')
|
||||
for hp, arch_info in arch_infos.items():
|
||||
arch_info.reset_latency('cifar10-valid', None, cifar010_latency)
|
||||
arch_info.reset_latency('cifar10', None, cifar010_latency)
|
||||
arch_info.reset_latency('cifar100', None, cifar100_latency)
|
||||
arch_info.reset_latency('ImageNet16-120', None, image_latency)
|
||||
|
||||
train_per_epoch_time = list(arch_infos['12'].query('cifar10-valid', 777).train_times.values())
|
||||
train_per_epoch_time = sum(train_per_epoch_time) / len(train_per_epoch_time)
|
||||
eval_ori_test_time, eval_x_valid_time = [], []
|
||||
for key, value in arch_infos['12'].query('cifar10-valid', 777).eval_times.items():
|
||||
if key.startswith('ori-test@'):
|
||||
eval_ori_test_time.append(value)
|
||||
elif key.startswith('x-valid@'):
|
||||
eval_x_valid_time.append(value)
|
||||
else: raise ValueError('-- {:} --'.format(key))
|
||||
eval_ori_test_time, eval_x_valid_time = float(np.mean(eval_ori_test_time)), float(np.mean(eval_x_valid_time))
|
||||
nums = {'ImageNet16-120-train': 151700, 'ImageNet16-120-valid': 3000, 'ImageNet16-120-test': 6000,
|
||||
'cifar10-valid-train': 25000, 'cifar10-valid-valid': 25000,
|
||||
'cifar10-train': 50000, 'cifar10-test': 10000,
|
||||
'cifar100-train': 50000, 'cifar100-test': 10000, 'cifar100-valid': 5000}
|
||||
eval_per_sample = (eval_ori_test_time + eval_x_valid_time) / (nums['cifar10-valid-valid'] + nums['cifar10-test'])
|
||||
for hp, arch_info in arch_infos.items():
|
||||
arch_info.reset_pseudo_train_times('cifar10-valid', None,
|
||||
train_per_epoch_time / nums['cifar10-valid-train'] * nums['cifar10-valid-train'])
|
||||
arch_info.reset_pseudo_train_times('cifar10', None,
|
||||
train_per_epoch_time / nums['cifar10-valid-train'] * nums['cifar10-train'])
|
||||
arch_info.reset_pseudo_train_times('cifar100', None,
|
||||
train_per_epoch_time / nums['cifar10-valid-train'] * nums['cifar100-train'])
|
||||
arch_info.reset_pseudo_train_times('ImageNet16-120', None,
|
||||
train_per_epoch_time / nums['cifar10-valid-train'] * nums['ImageNet16-120-train'])
|
||||
arch_info.reset_pseudo_eval_times('cifar10-valid', None, 'x-valid', eval_per_sample*nums['cifar10-valid-valid'])
|
||||
arch_info.reset_pseudo_eval_times('cifar10-valid', None, 'ori-test', eval_per_sample * nums['cifar10-test'])
|
||||
arch_info.reset_pseudo_eval_times('cifar10', None, 'ori-test', eval_per_sample * nums['cifar10-test'])
|
||||
arch_info.reset_pseudo_eval_times('cifar100', None, 'x-valid', eval_per_sample * nums['cifar100-valid'])
|
||||
arch_info.reset_pseudo_eval_times('cifar100', None, 'x-test', eval_per_sample * nums['cifar100-valid'])
|
||||
arch_info.reset_pseudo_eval_times('cifar100', None, 'ori-test', eval_per_sample * nums['cifar100-test'])
|
||||
arch_info.reset_pseudo_eval_times('ImageNet16-120', None, 'x-valid', eval_per_sample * nums['ImageNet16-120-valid'])
|
||||
arch_info.reset_pseudo_eval_times('ImageNet16-120', None, 'x-test', eval_per_sample * nums['ImageNet16-120-valid'])
|
||||
arch_info.reset_pseudo_eval_times('ImageNet16-120', None, 'ori-test', eval_per_sample * nums['ImageNet16-120-test'])
|
||||
return arch_infos
|
||||
|
||||
|
||||
def simplify(save_dir, save_name, nets, total, sup_config):
|
||||
dataloader_dict = get_nas_bench_loaders(6)
|
||||
hps, seeds = ['12', '200'], set()
|
||||
for hp in hps:
|
||||
sub_save_dir = save_dir / 'raw-data-{:}'.format(hp)
|
||||
ckps = sorted(list(sub_save_dir.glob('arch-*-seed-*.pth')))
|
||||
seed2names = defaultdict(list)
|
||||
for ckp in ckps:
|
||||
parts = re.split('-|\.', ckp.name)
|
||||
seed2names[parts[3]].append(ckp.name)
|
||||
print('DIR : {:}'.format(sub_save_dir))
|
||||
nums = []
|
||||
for seed, xlist in seed2names.items():
|
||||
seeds.add(seed)
|
||||
nums.append(len(xlist))
|
||||
print(' [seed={:}] there are {:} checkpoints.'.format(seed, len(xlist)))
|
||||
assert len(nets) == total == max(nums), 'there are some missed files : {:} vs {:}'.format(max(nums), total)
|
||||
print('{:} start simplify the checkpoint.'.format(time_string()))
|
||||
|
||||
datasets = ('cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120')
|
||||
|
||||
# Create the directory to save the processed data
|
||||
# full_save_dir contains all benchmark files with trained weights.
|
||||
# simplify_save_dir contains all benchmark files without trained weights.
|
||||
full_save_dir = save_dir / (save_name + '-FULL')
|
||||
simple_save_dir = save_dir / (save_name + '-SIMPLIFY')
|
||||
full_save_dir.mkdir(parents=True, exist_ok=True)
|
||||
simple_save_dir.mkdir(parents=True, exist_ok=True)
|
||||
# all data in memory
|
||||
arch2infos, evaluated_indexes = dict(), set()
|
||||
end_time, arch_time = time.time(), AverageMeter()
|
||||
# save the meta information
|
||||
temp_final_infos = {'meta_archs' : nets,
|
||||
'total_archs': total,
|
||||
'arch2infos' : None,
|
||||
'evaluated_indexes': set()}
|
||||
pickle_save(temp_final_infos, str(full_save_dir / 'meta.pickle'))
|
||||
pickle_save(temp_final_infos, str(simple_save_dir / 'meta.pickle'))
|
||||
|
||||
for index in tqdm(range(total)):
|
||||
arch_str = nets[index]
|
||||
hp2info = OrderedDict()
|
||||
|
||||
full_save_path = full_save_dir / '{:06d}.pickle'.format(index)
|
||||
simple_save_path = simple_save_dir / '{:06d}.pickle'.format(index)
|
||||
for hp in hps:
|
||||
sub_save_dir = save_dir / 'raw-data-{:}'.format(hp)
|
||||
ckps = [sub_save_dir / 'arch-{:06d}-seed-{:}.pth'.format(index, seed) for seed in seeds]
|
||||
ckps = [x for x in ckps if x.exists()]
|
||||
if len(ckps) == 0:
|
||||
raise ValueError('Invalid data : index={:}, hp={:}'.format(index, hp))
|
||||
|
||||
arch_info = account_one_arch(index, arch_str, ckps, datasets, dataloader_dict)
|
||||
hp2info[hp] = arch_info
|
||||
|
||||
hp2info = correct_time_related_info(index, hp2info)
|
||||
evaluated_indexes.add(index)
|
||||
|
||||
to_save_data = OrderedDict({'12': hp2info['12'].state_dict(),
|
||||
'200': hp2info['200'].state_dict()})
|
||||
pickle_save(to_save_data, str(full_save_path))
|
||||
|
||||
for hp in hps: hp2info[hp].clear_params()
|
||||
to_save_data = OrderedDict({'12': hp2info['12'].state_dict(),
|
||||
'200': hp2info['200'].state_dict()})
|
||||
pickle_save(to_save_data, str(simple_save_path))
|
||||
arch2infos[index] = to_save_data
|
||||
# measure elapsed time
|
||||
arch_time.update(time.time() - end_time)
|
||||
end_time = time.time()
|
||||
need_time = '{:}'.format(convert_secs2time(arch_time.avg * (total-index-1), True))
|
||||
# print('{:} {:06d}/{:06d} : still need {:}'.format(time_string(), index, total, need_time))
|
||||
print('{:} {:} done.'.format(time_string(), save_name))
|
||||
final_infos = {'meta_archs' : nets,
|
||||
'total_archs': total,
|
||||
'arch2infos' : arch2infos,
|
||||
'evaluated_indexes': evaluated_indexes}
|
||||
save_file_name = save_dir / '{:}.pickle'.format(save_name)
|
||||
pickle_save(final_infos, str(save_file_name))
|
||||
# move the benchmark file to a new path
|
||||
hd5sum = get_md5_file(str(save_file_name) + '.pbz2')
|
||||
hd5_file_name = save_dir / '{:}-{:}.pickle.pbz2'.format(NATS_TSS_BASE_NAME, hd5sum)
|
||||
shutil.move(str(save_file_name) + '.pbz2', hd5_file_name)
|
||||
print('Save {:} / {:} architecture results into {:} -> {:}.'.format(len(evaluated_indexes), total, save_file_name, hd5_file_name))
|
||||
# move the directory to a new path
|
||||
hd5_full_save_dir = save_dir / '{:}-{:}-full'.format(NATS_TSS_BASE_NAME, hd5sum)
|
||||
hd5_simple_save_dir = save_dir / '{:}-{:}-simple'.format(NATS_TSS_BASE_NAME, hd5sum)
|
||||
shutil.move(full_save_dir, hd5_full_save_dir)
|
||||
shutil.move(simple_save_dir, hd5_simple_save_dir)
|
||||
# save the meta information for simple and full
|
||||
# final_infos['arch2infos'] = None
|
||||
# final_infos['evaluated_indexes'] = set()
|
||||
|
||||
|
||||
def traverse_net(max_node):
|
||||
aa_nas_bench_ss = get_search_spaces('cell', 'nats-bench')
|
||||
archs = CellStructure.gen_all(aa_nas_bench_ss, max_node, False)
|
||||
print ('There are {:} archs vs {:}.'.format(len(archs), len(aa_nas_bench_ss) ** ((max_node-1)*max_node/2)))
|
||||
|
||||
random.seed( 88 ) # please do not change this line for reproducibility
|
||||
random.shuffle( archs )
|
||||
assert archs[0 ].tostr() == '|avg_pool_3x3~0|+|nor_conv_1x1~0|skip_connect~1|+|nor_conv_1x1~0|skip_connect~1|skip_connect~2|', 'please check the 0-th architecture : {:}'.format(archs[0])
|
||||
assert archs[9 ].tostr() == '|avg_pool_3x3~0|+|none~0|none~1|+|skip_connect~0|none~1|nor_conv_3x3~2|', 'please check the 9-th architecture : {:}'.format(archs[9])
|
||||
assert archs[123].tostr() == '|avg_pool_3x3~0|+|avg_pool_3x3~0|nor_conv_1x1~1|+|none~0|avg_pool_3x3~1|nor_conv_3x3~2|', 'please check the 123-th architecture : {:}'.format(archs[123])
|
||||
return [x.tostr() for x in archs]
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
parser = argparse.ArgumentParser(description='NATS-Bench (topology search space)', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
||||
parser.add_argument('--base_save_dir', type=str, default='./output/NATS-Bench-topology', help='The base-name of folder to save checkpoints and log.')
|
||||
parser.add_argument('--max_node' , type=int, default=4, help='The maximum node in a cell.')
|
||||
parser.add_argument('--channel' , type=int, default=16, help='The number of channels.')
|
||||
parser.add_argument('--num_cells' , type=int, default=5, help='The number of cells in one stage.')
|
||||
parser.add_argument('--check_N' , type=int, default=15625, help='For safety.')
|
||||
parser.add_argument('--save_name' , type=str, default='process', help='The save directory.')
|
||||
args = parser.parse_args()
|
||||
|
||||
nets = traverse_net(args.max_node)
|
||||
if len(nets) != args.check_N:
|
||||
raise ValueError('Pre-num-check failed : {:} vs {:}'.format(len(nets), args.check_N))
|
||||
|
||||
save_dir = Path(args.base_save_dir)
|
||||
simplify(save_dir, args.save_name, nets, args.check_N, {'name': 'infer.tiny', 'channel': args.channel, 'num_cells': args.num_cells})
|
@ -10,6 +10,7 @@ import os, copy, random, numpy as np
|
||||
from pathlib import Path
|
||||
from typing import List, Text, Union, Dict, Optional
|
||||
from collections import OrderedDict, defaultdict
|
||||
from .api_utils import time_string
|
||||
from .api_utils import pickle_load
|
||||
from .api_utils import ArchResults
|
||||
from .api_utils import NASBenchMetaAPI
|
||||
@ -71,7 +72,7 @@ class NATSsize(NASBenchMetaAPI):
|
||||
if isinstance(file_path_or_dict, str) or isinstance(file_path_or_dict, Path):
|
||||
file_path_or_dict = str(file_path_or_dict)
|
||||
if verbose:
|
||||
print('Try to create the NATS-Bench (size) api from {:} with fast_mode={:}'.format(file_path_or_dict, fast_mode))
|
||||
print('{:} Try to create the NATS-Bench (size) api from {:} with fast_mode={:}'.format(time_string(), file_path_or_dict, fast_mode))
|
||||
if not os.path.isfile(file_path_or_dict) and not os.path.isdir(file_path_or_dict):
|
||||
raise ValueError('{:} is neither a file or a dir.'.format(file_path_or_dict))
|
||||
self.filename = Path(file_path_or_dict).name
|
||||
@ -116,14 +117,15 @@ class NATSsize(NASBenchMetaAPI):
|
||||
assert arch not in self.archstr2index, 'This [{:}]-th arch {:} already in the dict ({:}).'.format(idx, arch, self.archstr2index[arch])
|
||||
self.archstr2index[arch] = idx
|
||||
if self.verbose:
|
||||
print('Create NATS-Bench (size) done with {:}/{:} architectures avaliable.'.format(len(self.evaluated_indexes), len(self.meta_archs)))
|
||||
print('{:} Create NATS-Bench (size) done with {:}/{:} architectures avaliable.'.format(
|
||||
time_string(), len(self.evaluated_indexes), len(self.meta_archs)))
|
||||
|
||||
def reload(self, archive_root: Text = None, index: int = None):
|
||||
"""Overwrite all information of the 'index'-th architecture in the search space, where the data will be loaded from 'archive_root'.
|
||||
If index is None, overwrite all ckps.
|
||||
"""
|
||||
if self.verbose:
|
||||
print('Call clear_params with archive_root={:} and index={:}'.format(archive_root, index))
|
||||
print('{:} Call clear_params with archive_root={:} and index={:}'.format(time_string(), archive_root, index))
|
||||
if archive_root is None:
|
||||
archive_root = os.path.join(os.environ['TORCH_HOME'], '{:}-full'.format(ALL_BASE_NAMES[-1]))
|
||||
assert os.path.isdir(archive_root), 'invalid directory : {:}'.format(archive_root)
|
||||
@ -155,7 +157,7 @@ class NATSsize(NASBenchMetaAPI):
|
||||
The difference between these three configurations are the number of training epochs.
|
||||
"""
|
||||
if self.verbose:
|
||||
print('Call query_info_str_by_arch with arch={:} and hp={:}'.format(arch, hp))
|
||||
print('{:} Call query_info_str_by_arch with arch={:} and hp={:}'.format(time_string(), arch, hp))
|
||||
return self._query_info_str_by_arch(arch, hp, print_information)
|
||||
|
||||
def get_more_info(self, index, dataset: Text, iepoch=None, hp='12', is_random=True):
|
||||
@ -177,7 +179,8 @@ class NATSsize(NASBenchMetaAPI):
|
||||
When is_random=False, the performanceo of all trials will be averaged.
|
||||
"""
|
||||
if self.verbose:
|
||||
print('Call the get_more_info function with index={:}, dataset={:}, iepoch={:}, hp={:}, and is_random={:}.'.format(index, dataset, iepoch, hp, is_random))
|
||||
print('{:} Call the get_more_info function with index={:}, dataset={:}, iepoch={:}, hp={:}, and is_random={:}.'.format(
|
||||
time_string(), index, dataset, iepoch, hp, is_random))
|
||||
index = self.query_index_by_arch(index) # To avoid the input is a string or an instance of a arch object
|
||||
self._prepare_info(index)
|
||||
if index not in self.arch2infos_dict:
|
||||
|
@ -10,6 +10,8 @@ import os, copy, random, numpy as np
|
||||
from pathlib import Path
|
||||
from typing import List, Text, Union, Dict, Optional
|
||||
from collections import OrderedDict, defaultdict
|
||||
import warnings
|
||||
from .api_utils import time_string
|
||||
from .api_utils import pickle_load
|
||||
from .api_utils import ArchResults
|
||||
from .api_utils import NASBenchMetaAPI
|
||||
@ -60,58 +62,89 @@ class NATStopology(NASBenchMetaAPI):
|
||||
self.reset_time()
|
||||
if file_path_or_dict is None:
|
||||
file_path_or_dict = os.path.join(os.environ['TORCH_HOME'], ALL_BENCHMARK_FILES[-1])
|
||||
print ('Try to use the default NATS-Bench (topology) path from {:}.'.format(file_path_or_dict))
|
||||
print ('{:} Try to use the default NATS-Bench (topology) path from {:}.'.format(time_string(), file_path_or_dict))
|
||||
if isinstance(file_path_or_dict, str) or isinstance(file_path_or_dict, Path):
|
||||
file_path_or_dict = str(file_path_or_dict)
|
||||
if verbose: print('try to create the NATS-Bench (topology) api from {:}'.format(file_path_or_dict))
|
||||
assert os.path.isfile(file_path_or_dict), 'invalid path : {:}'.format(file_path_or_dict)
|
||||
if verbose:
|
||||
print('{:} Try to create the NATS-Bench (topology) api from {:}'.format(time_string(), file_path_or_dict))
|
||||
if not os.path.isfile(file_path_or_dict) and not os.path.isdir(file_path_or_dict):
|
||||
raise ValueError('{:} is neither a file or a dir.'.format(file_path_or_dict))
|
||||
self.filename = Path(file_path_or_dict).name
|
||||
file_path_or_dict = np.load(file_path_or_dict)
|
||||
if fast_mode:
|
||||
if os.path.isfile(file_path_or_dict):
|
||||
raise ValueError('fast_mode={:} must feed the path for directory : {:}'.format(fast_mode, file_path_or_dict))
|
||||
else:
|
||||
self._archive_dir = file_path_or_dict
|
||||
else:
|
||||
if os.path.isdir(file_path_or_dict):
|
||||
raise ValueError('fast_mode={:} must feed the path for file : {:}'.format(fast_mode, file_path_or_dict))
|
||||
else:
|
||||
file_path_or_dict = pickle_load(file_path_or_dict)
|
||||
elif isinstance(file_path_or_dict, dict):
|
||||
file_path_or_dict = copy.deepcopy(file_path_or_dict)
|
||||
else: raise ValueError('invalid type : {:} not in [str, dict]'.format(type(file_path_or_dict)))
|
||||
assert isinstance(file_path_or_dict, dict), 'It should be a dict instead of {:}'.format(type(file_path_or_dict))
|
||||
self.verbose = verbose # [TODO] a flag indicating whether to print more logs
|
||||
keys = ('meta_archs', 'arch2infos', 'evaluated_indexes')
|
||||
for key in keys: assert key in file_path_or_dict, 'Can not find key[{:}] in the dict'.format(key)
|
||||
self.meta_archs = copy.deepcopy( file_path_or_dict['meta_archs'] )
|
||||
# This is a dict mapping each architecture to a dict, where the key is #epochs and the value is ArchResults
|
||||
self.arch2infos_dict = OrderedDict()
|
||||
self._avaliable_hps = set(['12', '200'])
|
||||
for xkey in sorted(list(file_path_or_dict['arch2infos'].keys())):
|
||||
all_info = file_path_or_dict['arch2infos'][xkey]
|
||||
hp2archres = OrderedDict()
|
||||
# self.arch2infos_less[xkey] = ArchResults.create_from_state_dict( all_info['less'] )
|
||||
# self.arch2infos_full[xkey] = ArchResults.create_from_state_dict( all_info['full'] )
|
||||
hp2archres['12'] = ArchResults.create_from_state_dict(all_info['less'])
|
||||
hp2archres['200'] = ArchResults.create_from_state_dict(all_info['full'])
|
||||
self.arch2infos_dict[xkey] = hp2archres
|
||||
self.evaluated_indexes = sorted(list(file_path_or_dict['evaluated_indexes']))
|
||||
if isinstance(file_path_or_dict, dict):
|
||||
keys = ('meta_archs', 'arch2infos', 'evaluated_indexes')
|
||||
for key in keys: assert key in file_path_or_dict, 'Can not find key[{:}] in the dict'.format(key)
|
||||
self.meta_archs = copy.deepcopy(file_path_or_dict['meta_archs'])
|
||||
# This is a dict mapping each architecture to a dict, where the key is #epochs and the value is ArchResults
|
||||
self.arch2infos_dict = OrderedDict()
|
||||
self._avaliable_hps = set()
|
||||
for xkey in sorted(list(file_path_or_dict['arch2infos'].keys())):
|
||||
all_info = file_path_or_dict['arch2infos'][xkey]
|
||||
hp2archres = OrderedDict()
|
||||
for hp_key, results in all_infos.items():
|
||||
hp2archres[hp_key] = ArchResults.create_from_state_dict(results)
|
||||
self._avaliable_hps.add(hp_key) # save the avaliable hyper-parameter
|
||||
self.arch2infos_dict[xkey] = hp2archres
|
||||
self.evaluated_indexes = list(file_path_or_dict['evaluated_indexes'])
|
||||
elif self.archive_dir is not None:
|
||||
benchmark_meta = pickle_load('{:}/meta.{:}'.format(self.archive_dir, PICKLE_EXT))
|
||||
self.meta_archs = copy.deepcopy(benchmark_meta['meta_archs'])
|
||||
self.arch2infos_dict = OrderedDict()
|
||||
self._avaliable_hps = set()
|
||||
self.evaluated_indexes = set()
|
||||
else:
|
||||
raise ValueError('file_path_or_dict [{:}] must be a dict or archive_dir must be set'.format(type(file_path_or_dict)))
|
||||
self.archstr2index = {}
|
||||
for idx, arch in enumerate(self.meta_archs):
|
||||
assert arch not in self.archstr2index, 'This [{:}]-th arch {:} already in the dict ({:}).'.format(idx, arch, self.archstr2index[arch])
|
||||
self.archstr2index[ arch ] = idx
|
||||
self.archstr2index[arch] = idx
|
||||
if self.verbose:
|
||||
print('{:} Create NATS-Bench (topology) done with {:}/{:} architectures avaliable.'.format(
|
||||
time_string(), len(self.evaluated_indexes), len(self.meta_archs)))
|
||||
|
||||
def reload(self, archive_root: Text = None, index: int = None):
|
||||
"""Overwrite all information of the 'index'-th architecture in the search space.
|
||||
It will load its data from 'archive_root'.
|
||||
"""
|
||||
if self.verbose:
|
||||
print('{:} Call clear_params with archive_root={:} and index={:}'.format(
|
||||
time_string(), archive_root, index))
|
||||
if archive_root is None:
|
||||
archive_root = os.path.join(os.environ['TORCH_HOME'], ALL_ARCHIVE_DIRS[-1])
|
||||
assert os.path.isdir(archive_root), 'invalid directory : {:}'.format(archive_root)
|
||||
archive_root = os.path.join(os.environ['TORCH_HOME'], '{:}-full'.format(ALL_BASE_NAMES[-1]))
|
||||
if not os.path.isdir(archive_root):
|
||||
warnings.warn('The input archive_root is None and the default archive_root path ({:}) does not exist, try to use self.archive_dir.'.format(archive_root))
|
||||
archive_root = self.archive_dir
|
||||
if archive_root is None or not os.path.isdir(archive_root):
|
||||
raise ValueError('Invalid archive_root : {:}'.format(archive_root))
|
||||
if index is None:
|
||||
indexes = list(range(len(self)))
|
||||
else:
|
||||
indexes = [index]
|
||||
for idx in indexes:
|
||||
assert 0 <= idx < len(self.meta_archs), 'invalid index of {:}'.format(idx)
|
||||
xfile_path = os.path.join(archive_root, '{:06d}-FULL.pth'.format(idx))
|
||||
xfile_path = os.path.join(archive_root, '{:06d}.{:}'.format(idx, PICKLE_EXT))
|
||||
if not os.path.isfile(xfile_path):
|
||||
xfile_path = os.path.join(archive_root, '{:d}.{:}'.format(idx, PICKLE_EXT))
|
||||
assert os.path.isfile(xfile_path), 'invalid data path : {:}'.format(xfile_path)
|
||||
xdata = torch.load(xfile_path, map_location='cpu')
|
||||
assert isinstance(xdata, dict) and 'full' in xdata and 'less' in xdata, 'invalid format of data in {:}'.format(xfile_path)
|
||||
xdata = pickle_load(xfile_path)
|
||||
assert isinstance(xdata, dict), 'invalid format of data in {:}'.format(xfile_path)
|
||||
self.evaluated_indexes.add(idx)
|
||||
hp2archres = OrderedDict()
|
||||
hp2archres['12'] = ArchResults.create_from_state_dict(xdata['less'])
|
||||
hp2archres['200'] = ArchResults.create_from_state_dict(xdata['full'])
|
||||
for hp_key, results in xdata.items():
|
||||
hp2archres[hp_key] = ArchResults.create_from_state_dict(results)
|
||||
self._avaliable_hps.add(hp_key)
|
||||
self.arch2infos_dict[idx] = hp2archres
|
||||
|
||||
def query_info_str_by_arch(self, arch, hp: Text='12'):
|
||||
@ -122,7 +155,7 @@ class NATStopology(NASBenchMetaAPI):
|
||||
The difference between these three configurations are the number of training epochs.
|
||||
"""
|
||||
if self.verbose:
|
||||
print('Call query_info_str_by_arch with arch={:} and hp={:}'.format(arch, hp))
|
||||
print('{:} Call query_info_str_by_arch with arch={:} and hp={:}'.format(time_string(), arch, hp))
|
||||
return self._query_info_str_by_arch(arch, hp, print_information)
|
||||
|
||||
# obtain the metric for the `index`-th architecture
|
||||
@ -142,8 +175,10 @@ class NATStopology(NASBenchMetaAPI):
|
||||
# When is_random=False, the performanceo of all trials will be averaged.
|
||||
def get_more_info(self, index, dataset, iepoch=None, hp='12', is_random=True):
|
||||
if self.verbose:
|
||||
print('Call the get_more_info function with index={:}, dataset={:}, iepoch={:}, hp={:}, and is_random={:}.'.format(index, dataset, iepoch, hp, is_random))
|
||||
print('{:} Call the get_more_info function with index={:}, dataset={:}, iepoch={:}, hp={:}, and is_random={:}.'.format(
|
||||
time_string(), index, dataset, iepoch, hp, is_random))
|
||||
index = self.query_index_by_arch(index) # To avoid the input is a string or an instance of a arch object
|
||||
self._prepare_info(index)
|
||||
if index not in self.arch2infos_dict:
|
||||
raise ValueError('Did not find {:} from arch2infos_dict.'.format(index))
|
||||
archresult = self.arch2infos_dict[index][str(hp)]
|
||||
|
@ -10,9 +10,9 @@
|
||||
# History:
|
||||
# [2020.07.31] The first version, where most content reused nas_201_api/api_utils.py
|
||||
#
|
||||
import os, abc, copy, random, numpy as np
|
||||
import os, abc, time, copy, random, numpy as np
|
||||
import bz2, pickle
|
||||
import importlib, warnings
|
||||
import warnings
|
||||
from typing import List, Text, Union, Dict, Optional
|
||||
from collections import OrderedDict, defaultdict
|
||||
|
||||
@ -36,6 +36,12 @@ def pickle_load(file_path, ext='.pbz2'):
|
||||
return pickle.load(cfile)
|
||||
|
||||
|
||||
def time_string():
|
||||
ISOTIMEFORMAT='%Y-%m-%d %X'
|
||||
string = '[{:}]'.format(time.strftime( ISOTIMEFORMAT, time.gmtime(time.time()) ))
|
||||
return string
|
||||
|
||||
|
||||
def remap_dataset_set_names(dataset, metric_on_set, verbose=False):
|
||||
"""re-map the metric_on_set to internal keys"""
|
||||
if verbose:
|
||||
@ -136,7 +142,7 @@ class NASBenchMetaAPI(metaclass=abc.ABCMeta):
|
||||
Otherwise, it will return an int in [0, the-number-of-candidates-in-the-search-space).
|
||||
"""
|
||||
if self.verbose:
|
||||
print('Call query_index_by_arch with arch={:}'.format(arch))
|
||||
print('{:} Call query_index_by_arch with arch={:}'.format(time_string(), arch))
|
||||
if isinstance(arch, int):
|
||||
if 0 <= arch < len(self):
|
||||
return arch
|
||||
@ -162,13 +168,13 @@ class NASBenchMetaAPI(metaclass=abc.ABCMeta):
|
||||
self.reload(self.archive_dir, index)
|
||||
elif not self.fast_mode:
|
||||
if self.verbose:
|
||||
print('Call _prepare_info with index={:} skip because it is not the fast mode.'.format(index))
|
||||
print('{:} Call _prepare_info with index={:} skip because it is not the fast mode.'.format(time_string(), index))
|
||||
else:
|
||||
raise ValueError('Invalid status: fast_mode={:} and archive_dir={:}'.format(self.fast_mode, self.archive_dir))
|
||||
else:
|
||||
assert index in self.evaluated_indexes, 'The index of {:} is not in self.evaluated_indexes, there must be something wrong.'.format(index)
|
||||
if self.verbose:
|
||||
print('Call _prepare_info with index={:} skip because it is in arch2infos_dict'.format(index))
|
||||
print('{:} Call _prepare_info with index={:} skip because it is in arch2infos_dict'.format(time_string(), index))
|
||||
|
||||
@abc.abstractmethod
|
||||
def reload(self, archive_root: Text = None, index: int = None):
|
||||
@ -185,7 +191,7 @@ class NASBenchMetaAPI(metaclass=abc.ABCMeta):
|
||||
-- '01' or '12' or '90': clear all the weights in arch2infos_dict[index][hp].
|
||||
"""
|
||||
if self.verbose:
|
||||
print('Call clear_params with index={:} and hp={:}'.format(index, hp))
|
||||
print('{:} Call clear_params with index={:} and hp={:}'.format(time_string(), index, hp))
|
||||
if index not in self.arch2infos_dict:
|
||||
warnings.warn('The {:}-th architecture is not in the benchmark data yet, no need to clear params.'.format(index))
|
||||
elif hp is None:
|
||||
@ -243,7 +249,7 @@ class NASBenchMetaAPI(metaclass=abc.ABCMeta):
|
||||
-- ImageNet16-120 : training the model on the ImageNet16-120 training set.
|
||||
"""
|
||||
if self.verbose:
|
||||
print('Call query_by_index with arch_index={:}, dataname={:}, hp={:}'.format(arch_index, dataname, hp))
|
||||
print('{:} Call query_by_index with arch_index={:}, dataname={:}, hp={:}'.format(time_string(), arch_index, dataname, hp))
|
||||
info = self.query_meta_info_by_index(arch_index, hp)
|
||||
if dataname is None: return info
|
||||
else:
|
||||
@ -254,7 +260,8 @@ class NASBenchMetaAPI(metaclass=abc.ABCMeta):
|
||||
def find_best(self, dataset, metric_on_set, FLOP_max=None, Param_max=None, hp: Text = '12'):
|
||||
"""Find the architecture with the highest accuracy based on some constraints."""
|
||||
if self.verbose:
|
||||
print('Call find_best with dataset={:}, metric_on_set={:}, hp={:} | with #FLOPs < {:} and #Params < {:}'.format(dataset, metric_on_set, hp, FLOP_max, Param_max))
|
||||
print('{:} Call find_best with dataset={:}, metric_on_set={:}, hp={:} | with #FLOPs < {:} and #Params < {:}'.format(
|
||||
time_string(), dataset, metric_on_set, hp, FLOP_max, Param_max))
|
||||
dataset, metric_on_set = remap_dataset_set_names(dataset, metric_on_set, self.verbose)
|
||||
best_index, highest_accuracy = -1, None
|
||||
evaluated_indexes = sorted(list(self.evaluated_indexes))
|
||||
@ -287,7 +294,7 @@ class NASBenchMetaAPI(metaclass=abc.ABCMeta):
|
||||
-- 200 : train the model by 200 epochs
|
||||
"""
|
||||
if self.verbose:
|
||||
print('Call the get_net_param function with index={:}, dataset={:}, seed={:}, hp={:}'.format(index, dataset, seed, hp))
|
||||
print('{:} Call the get_net_param function with index={:}, dataset={:}, seed={:}, hp={:}'.format(time_string(), index, dataset, seed, hp))
|
||||
info = self.query_meta_info_by_index(index, hp)
|
||||
return info.get_net_param(dataset, seed)
|
||||
|
||||
@ -304,7 +311,7 @@ class NASBenchMetaAPI(metaclass=abc.ABCMeta):
|
||||
config = api.get_net_config(128, 'cifar10')
|
||||
"""
|
||||
if self.verbose:
|
||||
print('Call the get_net_config function with index={:}, dataset={:}.'.format(index, dataset))
|
||||
print('{:} Call the get_net_config function with index={:}, dataset={:}.'.format(time_string(), index, dataset))
|
||||
self._prepare_info(index)
|
||||
if index in self.arch2infos_dict:
|
||||
info = self.arch2infos_dict[index]
|
||||
@ -318,7 +325,7 @@ class NASBenchMetaAPI(metaclass=abc.ABCMeta):
|
||||
def get_cost_info(self, index: int, dataset: Text, hp: Text = '12') -> Dict[Text, float]:
|
||||
"""To obtain the cost metric for the `index`-th architecture on a dataset."""
|
||||
if self.verbose:
|
||||
print('Call the get_cost_info function with index={:}, dataset={:}, and hp={:}.'.format(index, dataset, hp))
|
||||
print('{:} Call the get_cost_info function with index={:}, dataset={:}, and hp={:}.'.format(time_string(), index, dataset, hp))
|
||||
self._prepare_info(index)
|
||||
info = self.query_meta_info_by_index(index, hp)
|
||||
return info.get_compute_costs(dataset)
|
||||
@ -331,7 +338,7 @@ class NASBenchMetaAPI(metaclass=abc.ABCMeta):
|
||||
:return: return a float value in seconds
|
||||
"""
|
||||
if self.verbose:
|
||||
print('Call the get_latency function with index={:}, dataset={:}, and hp={:}.'.format(index, dataset, hp))
|
||||
print('{:} Call the get_latency function with index={:}, dataset={:}, and hp={:}.'.format(time_string(), index, dataset, hp))
|
||||
cost_dict = self.get_cost_info(index, dataset, hp)
|
||||
return cost_dict['latency']
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user