Update NATS-Bench (tss version 0.99)
This commit is contained in:
		| @@ -99,6 +99,12 @@ Some methods use knowledge distillation (KD), which require pre-trained models. | ||||
|  | ||||
| If you find that this project helps your research, please consider citing some of the following papers: | ||||
| ``` | ||||
| @article{dong2020nats, | ||||
|   title={NATS-Bench: Benchmarking NAS algorithms for Architecture Topology and Size}, | ||||
|   author={Dong, Xuanyi and Liu, Lu and Musial, Katarzyna and Gabrys, Bogdan}, | ||||
|   journal={arXiv preprint arXiv:2009.00437}, | ||||
|   year={2020} | ||||
| } | ||||
| @inproceedings{dong2020nasbench201, | ||||
|   title     = {NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search}, | ||||
|   author    = {Dong, Xuanyi and Yang, Yi}, | ||||
|   | ||||
| @@ -99,6 +99,12 @@ Some methods use knowledge distillation (KD), which require pre-trained models. | ||||
| 如果您发现该项目对您的科研或工程有帮助,请考虑引用下列的某些文献: | ||||
| ``` | ||||
| @inproceedings{dong2020nasbench201, | ||||
| @article{dong2020nats, | ||||
|   title={NATS-Bench: Benchmarking NAS algorithms for Architecture Topology and Size}, | ||||
|   author={Dong, Xuanyi and Liu, Lu and Musial, Katarzyna and Gabrys, Bogdan}, | ||||
|   journal={arXiv preprint arXiv:2009.00437}, | ||||
|   year={2020} | ||||
| } | ||||
|   title     = {NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search}, | ||||
|   author    = {Dong, Xuanyi and Yang, Yi}, | ||||
|   booktitle = {International Conference on Learning Representations (ICLR)}, | ||||
|   | ||||
| @@ -77,17 +77,17 @@ def account_one_arch(arch_index: int, arch_str: Text, checkpoints: List[Text], | ||||
|  | ||||
| def correct_time_related_info(arch_index: int, arch_info_full: ArchResults, arch_info_less: ArchResults): | ||||
|   # calibrate the latency based on NAS-Bench-201-v1_0-e61699.pth | ||||
|   cifar010_latency = (api.get_latency(arch_index, 'cifar10-valid', False) + api.get_latency(arch_index, 'cifar10', False)) / 2 | ||||
|   cifar010_latency = (api.get_latency(arch_index, 'cifar10-valid', hp='200') + api.get_latency(arch_index, 'cifar10', hp='200')) / 2 | ||||
|   arch_info_full.reset_latency('cifar10-valid', None, cifar010_latency) | ||||
|   arch_info_full.reset_latency('cifar10', None, cifar010_latency) | ||||
|   arch_info_less.reset_latency('cifar10-valid', None, cifar010_latency) | ||||
|   arch_info_less.reset_latency('cifar10', None, cifar010_latency) | ||||
|  | ||||
|   cifar100_latency = api.get_latency(arch_index, 'cifar100', False) | ||||
|   cifar100_latency = api.get_latency(arch_index, 'cifar100', hp='200') | ||||
|   arch_info_full.reset_latency('cifar100', None, cifar100_latency) | ||||
|   arch_info_less.reset_latency('cifar100', None, cifar100_latency) | ||||
|  | ||||
|   image_latency = api.get_latency(arch_index, 'ImageNet16-120', False) | ||||
|   image_latency = api.get_latency(arch_index, 'ImageNet16-120', hp='200') | ||||
|   arch_info_full.reset_latency('ImageNet16-120', None, image_latency) | ||||
|   arch_info_less.reset_latency('ImageNet16-120', None, image_latency) | ||||
|  | ||||
|   | ||||
| @@ -1,7 +1,7 @@ | ||||
| ############################################################################## | ||||
| # NATS-Bench: Benchmarking NAS algorithms for Architecture Topology and Size # | ||||
| ############################################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.07                          # | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.08                          # | ||||
| ############################################################################## | ||||
| # This file is used to re-orangize all checkpoints (created by main-sss.py)  # | ||||
| # into a single benchmark file. Besides, for each trial, we will merge the   # | ||||
| @@ -25,6 +25,7 @@ from nats_bench   import pickle_save, pickle_load, ArchResults, ResultsCount | ||||
| from procedures   import bench_pure_evaluate as pure_evaluate, get_nas_bench_loaders | ||||
| from utils        import get_md5_file | ||||
|  | ||||
|  | ||||
| NATS_SSS_BASE_NAME = 'NATS-sss-v1_0'  # 2020.08.28 | ||||
|  | ||||
|  | ||||
|   | ||||
| @@ -85,13 +85,16 @@ def test_api(api, is_301=True): | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|  | ||||
|   # api201 = create('./output/NATS-Bench-topology/process-FULL', 'topology', fast_mode=True, verbose=True) | ||||
|   for fast_mode in [True, False]: | ||||
|     for verbose in [True, False]: | ||||
|       api201 = create(None, 'tss', fast_mode=fast_mode, verbose=True) | ||||
|       print('{:} create with fast_mode={:} and verbose={:}'.format(time_string(), fast_mode, verbose)) | ||||
|       test_api(api201, False) | ||||
|  | ||||
|   for fast_mode in [True, False]: | ||||
|     for verbose in [True, False]: | ||||
|       print('{:} create with fast_mode={:} and verbose={:}'.format(time_string(), fast_mode, verbose)) | ||||
|       api301 = create(None, 'size', fast_mode=fast_mode, verbose=True) | ||||
|       print('{:} --->>> {:}'.format(time_string(), api301)) | ||||
|       test_api(api301, True) | ||||
|  | ||||
|   # api201 = create(None, 'topology', True)  # use the default file path | ||||
|   # test_api(api201, False) | ||||
|   # print ('Test {:} done'.format(api201)) | ||||
|   | ||||
							
								
								
									
										262
									
								
								exps/NATS-Bench/tss-collect.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										262
									
								
								exps/NATS-Bench/tss-collect.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,262 @@ | ||||
| ############################################################################## | ||||
| # NATS-Bench: Benchmarking NAS algorithms for Architecture Topology and Size # | ||||
| ############################################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.08                          # | ||||
| ############################################################################## | ||||
| # This file is used to re-orangize all checkpoints (created by main-tss.py)  # | ||||
| # into a single benchmark file. Besides, for each trial, we will merge the   # | ||||
| # information of all its trials into a single file.                          # | ||||
| #                                                                            # | ||||
| # Usage:                                                                     # | ||||
| # python exps/NATS-Bench/tss-collect.py                                      # | ||||
| ############################################################################## | ||||
| import os, re, sys, time, random, argparse, collections | ||||
| import numpy as np | ||||
| from copy import deepcopy | ||||
| import torch | ||||
| from tqdm import tqdm | ||||
| from pathlib import Path | ||||
| from collections import defaultdict, OrderedDict | ||||
| from typing import Dict, Any, Text, List | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
| from log_utils    import AverageMeter, time_string, convert_secs2time | ||||
| from config_utils import load_config, dict2config | ||||
| from datasets     import get_datasets | ||||
| from models       import CellStructure, get_cell_based_tiny_net, get_search_spaces | ||||
| from nats_bench   import pickle_save, pickle_load, ArchResults, ResultsCount | ||||
| from procedures   import bench_pure_evaluate as pure_evaluate, get_nas_bench_loaders | ||||
| from nas_201_api  import NASBench201API | ||||
|  | ||||
|  | ||||
| api = NASBench201API('{:}/.torch/NAS-Bench-201-v1_0-e61699.pth'.format(os.environ['HOME'])) | ||||
|  | ||||
| NATS_TSS_BASE_NAME = 'NATS-tss-v1_0'  # 2020.08.28 | ||||
|  | ||||
|  | ||||
| def create_result_count(used_seed: int, dataset: Text, arch_config: Dict[Text, Any], | ||||
|                         results: Dict[Text, Any], dataloader_dict: Dict[Text, Any]) -> ResultsCount: | ||||
|   xresult = ResultsCount(dataset, results['net_state_dict'], results['train_acc1es'], results['train_losses'], | ||||
|                          results['param'], results['flop'], arch_config, used_seed, results['total_epoch'], None) | ||||
|   net_config = dict2config({'name': 'infer.tiny', 'C': arch_config['channel'], 'N': arch_config['num_cells'], 'genotype': CellStructure.str2structure(arch_config['arch_str']), 'num_classes': arch_config['class_num']}, None) | ||||
|   if 'train_times' in results: # new version | ||||
|     xresult.update_train_info(results['train_acc1es'], results['train_acc5es'], results['train_losses'], results['train_times']) | ||||
|     xresult.update_eval(results['valid_acc1es'], results['valid_losses'], results['valid_times']) | ||||
|   else: | ||||
|     network = get_cell_based_tiny_net(net_config) | ||||
|     network.load_state_dict(xresult.get_net_param()) | ||||
|     if dataset == 'cifar10-valid': | ||||
|       xresult.update_OLD_eval('x-valid' , results['valid_acc1es'], results['valid_losses']) | ||||
|       loss, top1, top5, latencies = pure_evaluate(dataloader_dict['{:}@{:}'.format('cifar10', 'test')], network.cuda()) | ||||
|       xresult.update_OLD_eval('ori-test', {results['total_epoch']-1: top1}, {results['total_epoch']-1: loss}) | ||||
|       xresult.update_latency(latencies) | ||||
|     elif dataset == 'cifar10': | ||||
|       xresult.update_OLD_eval('ori-test', results['valid_acc1es'], results['valid_losses']) | ||||
|       loss, top1, top5, latencies = pure_evaluate(dataloader_dict['{:}@{:}'.format(dataset, 'test')], network.cuda()) | ||||
|       xresult.update_latency(latencies) | ||||
|     elif dataset == 'cifar100' or dataset == 'ImageNet16-120': | ||||
|       xresult.update_OLD_eval('ori-test', results['valid_acc1es'], results['valid_losses']) | ||||
|       loss, top1, top5, latencies = pure_evaluate(dataloader_dict['{:}@{:}'.format(dataset, 'valid')], network.cuda()) | ||||
|       xresult.update_OLD_eval('x-valid', {results['total_epoch']-1: top1}, {results['total_epoch']-1: loss}) | ||||
|       loss, top1, top5, latencies = pure_evaluate(dataloader_dict['{:}@{:}'.format(dataset,  'test')], network.cuda()) | ||||
|       xresult.update_OLD_eval('x-test' , {results['total_epoch']-1: top1}, {results['total_epoch']-1: loss}) | ||||
|       xresult.update_latency(latencies) | ||||
|     else: | ||||
|       raise ValueError('invalid dataset name : {:}'.format(dataset)) | ||||
|   return xresult | ||||
|  | ||||
|  | ||||
| def account_one_arch(arch_index, arch_str, checkpoints, datasets, dataloader_dict): | ||||
|   information = ArchResults(arch_index, arch_str) | ||||
|  | ||||
|   for checkpoint_path in checkpoints: | ||||
|     checkpoint = torch.load(checkpoint_path, map_location='cpu') | ||||
|     used_seed  = checkpoint_path.name.split('-')[-1].split('.')[0] | ||||
|     ok_dataset = 0 | ||||
|     for dataset in datasets: | ||||
|       if dataset not in checkpoint: | ||||
|         print('Can not find {:} in arch-{:} from {:}'.format(dataset, arch_index, checkpoint_path)) | ||||
|         continue | ||||
|       else: | ||||
|         ok_dataset += 1 | ||||
|       results     = checkpoint[dataset] | ||||
|       assert results['finish-train'], 'This {:} arch seed={:} does not finish train on {:} ::: {:}'.format(arch_index, used_seed, dataset, checkpoint_path) | ||||
|       arch_config = {'channel': results['channel'], 'num_cells': results['num_cells'], 'arch_str': arch_str, 'class_num': results['config']['class_num']} | ||||
|        | ||||
|       xresult = create_result_count(used_seed, dataset, arch_config, results, dataloader_dict) | ||||
|       information.update(dataset, int(used_seed), xresult) | ||||
|     if ok_dataset == 0: raise ValueError('{:} does not find any data'.format(checkpoint_path)) | ||||
|   return information | ||||
|  | ||||
|  | ||||
| def correct_time_related_info(arch_index: int, arch_infos: Dict[Text, ArchResults]): | ||||
|   # calibrate the latency based on NAS-Bench-201-v1_0-e61699.pth | ||||
|   cifar010_latency = (api.get_latency(arch_index, 'cifar10-valid', hp='200') + api.get_latency(arch_index, 'cifar10', hp='200')) / 2 | ||||
|   cifar100_latency = api.get_latency(arch_index, 'cifar100', hp='200') | ||||
|   image_latency = api.get_latency(arch_index, 'ImageNet16-120', hp='200') | ||||
|   for hp, arch_info in arch_infos.items(): | ||||
|     arch_info.reset_latency('cifar10-valid', None, cifar010_latency) | ||||
|     arch_info.reset_latency('cifar10', None, cifar010_latency) | ||||
|     arch_info.reset_latency('cifar100', None, cifar100_latency) | ||||
|     arch_info.reset_latency('ImageNet16-120', None, image_latency) | ||||
|  | ||||
|   train_per_epoch_time = list(arch_infos['12'].query('cifar10-valid', 777).train_times.values()) | ||||
|   train_per_epoch_time = sum(train_per_epoch_time) / len(train_per_epoch_time) | ||||
|   eval_ori_test_time, eval_x_valid_time = [], [] | ||||
|   for key, value in arch_infos['12'].query('cifar10-valid', 777).eval_times.items(): | ||||
|     if key.startswith('ori-test@'): | ||||
|       eval_ori_test_time.append(value) | ||||
|     elif key.startswith('x-valid@'): | ||||
|       eval_x_valid_time.append(value) | ||||
|     else: raise ValueError('-- {:} --'.format(key)) | ||||
|   eval_ori_test_time, eval_x_valid_time = float(np.mean(eval_ori_test_time)), float(np.mean(eval_x_valid_time)) | ||||
|   nums = {'ImageNet16-120-train': 151700, 'ImageNet16-120-valid': 3000, 'ImageNet16-120-test': 6000, | ||||
|           'cifar10-valid-train': 25000, 'cifar10-valid-valid': 25000, | ||||
|           'cifar10-train': 50000, 'cifar10-test': 10000, | ||||
|           'cifar100-train': 50000, 'cifar100-test': 10000, 'cifar100-valid': 5000} | ||||
|   eval_per_sample = (eval_ori_test_time + eval_x_valid_time) / (nums['cifar10-valid-valid'] + nums['cifar10-test']) | ||||
|   for hp, arch_info in arch_infos.items(): | ||||
|     arch_info.reset_pseudo_train_times('cifar10-valid', None, | ||||
|                                        train_per_epoch_time / nums['cifar10-valid-train'] * nums['cifar10-valid-train']) | ||||
|     arch_info.reset_pseudo_train_times('cifar10', None, | ||||
|                                        train_per_epoch_time / nums['cifar10-valid-train'] * nums['cifar10-train']) | ||||
|     arch_info.reset_pseudo_train_times('cifar100', None, | ||||
|                                        train_per_epoch_time / nums['cifar10-valid-train'] * nums['cifar100-train']) | ||||
|     arch_info.reset_pseudo_train_times('ImageNet16-120', None, | ||||
|                                        train_per_epoch_time / nums['cifar10-valid-train'] * nums['ImageNet16-120-train']) | ||||
|     arch_info.reset_pseudo_eval_times('cifar10-valid', None, 'x-valid', eval_per_sample*nums['cifar10-valid-valid']) | ||||
|     arch_info.reset_pseudo_eval_times('cifar10-valid', None, 'ori-test', eval_per_sample * nums['cifar10-test']) | ||||
|     arch_info.reset_pseudo_eval_times('cifar10', None, 'ori-test', eval_per_sample * nums['cifar10-test']) | ||||
|     arch_info.reset_pseudo_eval_times('cifar100', None, 'x-valid', eval_per_sample * nums['cifar100-valid']) | ||||
|     arch_info.reset_pseudo_eval_times('cifar100', None, 'x-test', eval_per_sample * nums['cifar100-valid']) | ||||
|     arch_info.reset_pseudo_eval_times('cifar100', None, 'ori-test', eval_per_sample * nums['cifar100-test']) | ||||
|     arch_info.reset_pseudo_eval_times('ImageNet16-120', None, 'x-valid', eval_per_sample * nums['ImageNet16-120-valid']) | ||||
|     arch_info.reset_pseudo_eval_times('ImageNet16-120', None, 'x-test', eval_per_sample * nums['ImageNet16-120-valid']) | ||||
|     arch_info.reset_pseudo_eval_times('ImageNet16-120', None, 'ori-test', eval_per_sample * nums['ImageNet16-120-test']) | ||||
|   return arch_infos | ||||
|  | ||||
|  | ||||
| def simplify(save_dir, save_name, nets, total, sup_config): | ||||
|   dataloader_dict = get_nas_bench_loaders(6) | ||||
|   hps, seeds = ['12', '200'], set() | ||||
|   for hp in hps: | ||||
|     sub_save_dir = save_dir / 'raw-data-{:}'.format(hp) | ||||
|     ckps = sorted(list(sub_save_dir.glob('arch-*-seed-*.pth'))) | ||||
|     seed2names = defaultdict(list) | ||||
|     for ckp in ckps: | ||||
|       parts = re.split('-|\.', ckp.name) | ||||
|       seed2names[parts[3]].append(ckp.name) | ||||
|     print('DIR : {:}'.format(sub_save_dir)) | ||||
|     nums = [] | ||||
|     for seed, xlist in seed2names.items(): | ||||
|       seeds.add(seed) | ||||
|       nums.append(len(xlist)) | ||||
|       print('  [seed={:}] there are {:} checkpoints.'.format(seed, len(xlist))) | ||||
|     assert len(nets) == total == max(nums), 'there are some missed files : {:} vs {:}'.format(max(nums), total) | ||||
|   print('{:} start simplify the checkpoint.'.format(time_string())) | ||||
|  | ||||
|   datasets = ('cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120') | ||||
|  | ||||
|   # Create the directory to save the processed data | ||||
|   # full_save_dir contains all benchmark files with trained weights. | ||||
|   # simplify_save_dir contains all benchmark files without trained weights. | ||||
|   full_save_dir = save_dir / (save_name + '-FULL') | ||||
|   simple_save_dir = save_dir / (save_name + '-SIMPLIFY') | ||||
|   full_save_dir.mkdir(parents=True, exist_ok=True) | ||||
|   simple_save_dir.mkdir(parents=True, exist_ok=True) | ||||
|   # all data in memory | ||||
|   arch2infos, evaluated_indexes = dict(), set() | ||||
|   end_time, arch_time = time.time(), AverageMeter() | ||||
|   # save the meta information | ||||
|   temp_final_infos = {'meta_archs' : nets, | ||||
|                       'total_archs': total, | ||||
|                       'arch2infos' : None, | ||||
|                       'evaluated_indexes': set()} | ||||
|   pickle_save(temp_final_infos, str(full_save_dir / 'meta.pickle')) | ||||
|   pickle_save(temp_final_infos, str(simple_save_dir / 'meta.pickle')) | ||||
|  | ||||
|   for index in tqdm(range(total)): | ||||
|     arch_str = nets[index] | ||||
|     hp2info = OrderedDict() | ||||
|  | ||||
|     full_save_path = full_save_dir / '{:06d}.pickle'.format(index) | ||||
|     simple_save_path = simple_save_dir / '{:06d}.pickle'.format(index) | ||||
|     for hp in hps: | ||||
|       sub_save_dir = save_dir / 'raw-data-{:}'.format(hp) | ||||
|       ckps = [sub_save_dir / 'arch-{:06d}-seed-{:}.pth'.format(index, seed) for seed in seeds] | ||||
|       ckps = [x for x in ckps if x.exists()] | ||||
|       if len(ckps) == 0: | ||||
|         raise ValueError('Invalid data : index={:}, hp={:}'.format(index, hp)) | ||||
|  | ||||
|       arch_info = account_one_arch(index, arch_str, ckps, datasets, dataloader_dict) | ||||
|       hp2info[hp] = arch_info | ||||
|      | ||||
|     hp2info = correct_time_related_info(index, hp2info) | ||||
|     evaluated_indexes.add(index) | ||||
|      | ||||
|     to_save_data = OrderedDict({'12': hp2info['12'].state_dict(), | ||||
|                                 '200': hp2info['200'].state_dict()}) | ||||
|     pickle_save(to_save_data, str(full_save_path)) | ||||
|      | ||||
|     for hp in hps: hp2info[hp].clear_params() | ||||
|     to_save_data = OrderedDict({'12': hp2info['12'].state_dict(), | ||||
|                                 '200': hp2info['200'].state_dict()}) | ||||
|     pickle_save(to_save_data, str(simple_save_path)) | ||||
|     arch2infos[index] = to_save_data | ||||
|     # measure elapsed time | ||||
|     arch_time.update(time.time() - end_time) | ||||
|     end_time  = time.time() | ||||
|     need_time = '{:}'.format(convert_secs2time(arch_time.avg * (total-index-1), True)) | ||||
|     # print('{:} {:06d}/{:06d} : still need {:}'.format(time_string(), index, total, need_time)) | ||||
|   print('{:} {:} done.'.format(time_string(), save_name)) | ||||
|   final_infos = {'meta_archs' : nets, | ||||
|                  'total_archs': total, | ||||
|                  'arch2infos' : arch2infos, | ||||
|                  'evaluated_indexes': evaluated_indexes} | ||||
|   save_file_name = save_dir / '{:}.pickle'.format(save_name) | ||||
|   pickle_save(final_infos, str(save_file_name)) | ||||
|   # move the benchmark file to a new path | ||||
|   hd5sum = get_md5_file(str(save_file_name) + '.pbz2') | ||||
|   hd5_file_name = save_dir / '{:}-{:}.pickle.pbz2'.format(NATS_TSS_BASE_NAME, hd5sum) | ||||
|   shutil.move(str(save_file_name) + '.pbz2', hd5_file_name) | ||||
|   print('Save {:} / {:} architecture results into {:} -> {:}.'.format(len(evaluated_indexes), total, save_file_name, hd5_file_name)) | ||||
|   # move the directory to a new path | ||||
|   hd5_full_save_dir = save_dir / '{:}-{:}-full'.format(NATS_TSS_BASE_NAME, hd5sum) | ||||
|   hd5_simple_save_dir = save_dir / '{:}-{:}-simple'.format(NATS_TSS_BASE_NAME, hd5sum) | ||||
|   shutil.move(full_save_dir, hd5_full_save_dir) | ||||
|   shutil.move(simple_save_dir, hd5_simple_save_dir) | ||||
|   # save the meta information for simple and full | ||||
|   # final_infos['arch2infos'] = None | ||||
|   # final_infos['evaluated_indexes'] = set() | ||||
|  | ||||
|  | ||||
| def traverse_net(max_node): | ||||
|   aa_nas_bench_ss = get_search_spaces('cell', 'nats-bench') | ||||
|   archs = CellStructure.gen_all(aa_nas_bench_ss, max_node, False) | ||||
|   print ('There are {:} archs vs {:}.'.format(len(archs), len(aa_nas_bench_ss) ** ((max_node-1)*max_node/2))) | ||||
|  | ||||
|   random.seed( 88 ) # please do not change this line for reproducibility | ||||
|   random.shuffle( archs ) | ||||
|   assert archs[0  ].tostr() == '|avg_pool_3x3~0|+|nor_conv_1x1~0|skip_connect~1|+|nor_conv_1x1~0|skip_connect~1|skip_connect~2|', 'please check the 0-th architecture : {:}'.format(archs[0]) | ||||
|   assert archs[9  ].tostr() == '|avg_pool_3x3~0|+|none~0|none~1|+|skip_connect~0|none~1|nor_conv_3x3~2|', 'please check the 9-th architecture : {:}'.format(archs[9]) | ||||
|   assert archs[123].tostr() == '|avg_pool_3x3~0|+|avg_pool_3x3~0|nor_conv_1x1~1|+|none~0|avg_pool_3x3~1|nor_conv_3x3~2|', 'please check the 123-th architecture : {:}'.format(archs[123]) | ||||
|   return [x.tostr() for x in archs] | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|  | ||||
|   parser = argparse.ArgumentParser(description='NATS-Bench (topology search space)', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|   parser.add_argument('--base_save_dir',  type=str, default='./output/NATS-Bench-topology', help='The base-name of folder to save checkpoints and log.') | ||||
|   parser.add_argument('--max_node'     ,  type=int, default=4,                           help='The maximum node in a cell.') | ||||
|   parser.add_argument('--channel'      ,  type=int, default=16,                          help='The number of channels.') | ||||
|   parser.add_argument('--num_cells'    ,  type=int, default=5,                           help='The number of cells in one stage.') | ||||
|   parser.add_argument('--check_N'      ,  type=int, default=15625,  help='For safety.') | ||||
|   parser.add_argument('--save_name'    ,  type=str, default='process',                  help='The save directory.') | ||||
|   args = parser.parse_args() | ||||
|    | ||||
|   nets = traverse_net(args.max_node) | ||||
|   if len(nets) != args.check_N: | ||||
|     raise ValueError('Pre-num-check failed : {:} vs {:}'.format(len(nets), args.check_N)) | ||||
|    | ||||
|   save_dir  = Path(args.base_save_dir) | ||||
|   simplify(save_dir, args.save_name, nets, args.check_N, {'name': 'infer.tiny', 'channel': args.channel, 'num_cells': args.num_cells}) | ||||
| @@ -10,6 +10,7 @@ import os, copy, random, numpy as np | ||||
| from pathlib import Path | ||||
| from typing import List, Text, Union, Dict, Optional | ||||
| from collections import OrderedDict, defaultdict | ||||
| from .api_utils import time_string | ||||
| from .api_utils import pickle_load | ||||
| from .api_utils import ArchResults | ||||
| from .api_utils import NASBenchMetaAPI | ||||
| @@ -71,7 +72,7 @@ class NATSsize(NASBenchMetaAPI): | ||||
|     if isinstance(file_path_or_dict, str) or isinstance(file_path_or_dict, Path): | ||||
|       file_path_or_dict = str(file_path_or_dict) | ||||
|       if verbose: | ||||
|         print('Try to create the NATS-Bench (size) api from {:} with fast_mode={:}'.format(file_path_or_dict, fast_mode)) | ||||
|         print('{:} Try to create the NATS-Bench (size) api from {:} with fast_mode={:}'.format(time_string(), file_path_or_dict, fast_mode)) | ||||
|       if not os.path.isfile(file_path_or_dict) and not os.path.isdir(file_path_or_dict): | ||||
|         raise ValueError('{:} is neither a file or a dir.'.format(file_path_or_dict)) | ||||
|       self.filename = Path(file_path_or_dict).name | ||||
| @@ -116,14 +117,15 @@ class NATSsize(NASBenchMetaAPI): | ||||
|       assert arch not in self.archstr2index, 'This [{:}]-th arch {:} already in the dict ({:}).'.format(idx, arch, self.archstr2index[arch]) | ||||
|       self.archstr2index[arch] = idx | ||||
|     if self.verbose: | ||||
|       print('Create NATS-Bench (size) done with {:}/{:} architectures avaliable.'.format(len(self.evaluated_indexes), len(self.meta_archs))) | ||||
|       print('{:} Create NATS-Bench (size) done with {:}/{:} architectures avaliable.'.format( | ||||
|             time_string(), len(self.evaluated_indexes), len(self.meta_archs))) | ||||
|  | ||||
|   def reload(self, archive_root: Text = None, index: int = None): | ||||
|     """Overwrite all information of the 'index'-th architecture in the search space, where the data will be loaded from 'archive_root'. | ||||
|        If index is None, overwrite all ckps. | ||||
|     """ | ||||
|     if self.verbose: | ||||
|       print('Call clear_params with archive_root={:} and index={:}'.format(archive_root, index)) | ||||
|       print('{:} Call clear_params with archive_root={:} and index={:}'.format(time_string(), archive_root, index)) | ||||
|     if archive_root is None: | ||||
|       archive_root = os.path.join(os.environ['TORCH_HOME'], '{:}-full'.format(ALL_BASE_NAMES[-1])) | ||||
|     assert os.path.isdir(archive_root), 'invalid directory : {:}'.format(archive_root) | ||||
| @@ -155,7 +157,7 @@ class NATSsize(NASBenchMetaAPI): | ||||
|         The difference between these three configurations are the number of training epochs. | ||||
|     """ | ||||
|     if self.verbose: | ||||
|       print('Call query_info_str_by_arch with arch={:} and hp={:}'.format(arch, hp)) | ||||
|       print('{:} Call query_info_str_by_arch with arch={:} and hp={:}'.format(time_string(), arch, hp)) | ||||
|     return self._query_info_str_by_arch(arch, hp, print_information) | ||||
|  | ||||
|   def get_more_info(self, index, dataset: Text, iepoch=None, hp='12', is_random=True): | ||||
| @@ -177,7 +179,8 @@ class NATSsize(NASBenchMetaAPI): | ||||
|           When is_random=False, the performanceo of all trials will be averaged. | ||||
|     """ | ||||
|     if self.verbose: | ||||
|       print('Call the get_more_info function with index={:}, dataset={:}, iepoch={:}, hp={:}, and is_random={:}.'.format(index, dataset, iepoch, hp, is_random)) | ||||
|       print('{:} Call the get_more_info function with index={:}, dataset={:}, iepoch={:}, hp={:}, and is_random={:}.'.format( | ||||
|             time_string(), index, dataset, iepoch, hp, is_random)) | ||||
|     index = self.query_index_by_arch(index)  # To avoid the input is a string or an instance of a arch object | ||||
|     self._prepare_info(index) | ||||
|     if index not in self.arch2infos_dict: | ||||
|   | ||||
| @@ -10,6 +10,8 @@ import os, copy, random, numpy as np | ||||
| from pathlib import Path | ||||
| from typing import List, Text, Union, Dict, Optional | ||||
| from collections import OrderedDict, defaultdict | ||||
| import warnings | ||||
| from .api_utils import time_string | ||||
| from .api_utils import pickle_load | ||||
| from .api_utils import ArchResults | ||||
| from .api_utils import NASBenchMetaAPI | ||||
| @@ -60,58 +62,89 @@ class NATStopology(NASBenchMetaAPI): | ||||
|     self.reset_time() | ||||
|     if file_path_or_dict is None: | ||||
|       file_path_or_dict = os.path.join(os.environ['TORCH_HOME'], ALL_BENCHMARK_FILES[-1]) | ||||
|       print ('Try to use the default NATS-Bench (topology) path from {:}.'.format(file_path_or_dict)) | ||||
|       print ('{:} Try to use the default NATS-Bench (topology) path from {:}.'.format(time_string(), file_path_or_dict)) | ||||
|     if isinstance(file_path_or_dict, str) or isinstance(file_path_or_dict, Path): | ||||
|       file_path_or_dict = str(file_path_or_dict) | ||||
|       if verbose: print('try to create the NATS-Bench (topology) api from {:}'.format(file_path_or_dict)) | ||||
|       assert os.path.isfile(file_path_or_dict), 'invalid path : {:}'.format(file_path_or_dict) | ||||
|       if verbose: | ||||
|         print('{:} Try to create the NATS-Bench (topology) api from {:}'.format(time_string(), file_path_or_dict)) | ||||
|       if not os.path.isfile(file_path_or_dict) and not os.path.isdir(file_path_or_dict): | ||||
|         raise ValueError('{:} is neither a file or a dir.'.format(file_path_or_dict)) | ||||
|       self.filename = Path(file_path_or_dict).name | ||||
|       file_path_or_dict = np.load(file_path_or_dict) | ||||
|       if fast_mode: | ||||
|         if os.path.isfile(file_path_or_dict): | ||||
|           raise ValueError('fast_mode={:} must feed the path for directory : {:}'.format(fast_mode, file_path_or_dict)) | ||||
|         else: | ||||
|           self._archive_dir = file_path_or_dict | ||||
|       else: | ||||
|         if os.path.isdir(file_path_or_dict): | ||||
|           raise ValueError('fast_mode={:} must feed the path for file : {:}'.format(fast_mode, file_path_or_dict)) | ||||
|         else: | ||||
|           file_path_or_dict = pickle_load(file_path_or_dict) | ||||
|     elif isinstance(file_path_or_dict, dict): | ||||
|       file_path_or_dict = copy.deepcopy(file_path_or_dict) | ||||
|     else: raise ValueError('invalid type : {:} not in [str, dict]'.format(type(file_path_or_dict))) | ||||
|     assert isinstance(file_path_or_dict, dict), 'It should be a dict instead of {:}'.format(type(file_path_or_dict)) | ||||
|     self.verbose = verbose # [TODO] a flag indicating whether to print more logs | ||||
|     if isinstance(file_path_or_dict, dict): | ||||
|       keys = ('meta_archs', 'arch2infos', 'evaluated_indexes') | ||||
|       for key in keys: assert key in file_path_or_dict, 'Can not find key[{:}] in the dict'.format(key) | ||||
|       self.meta_archs = copy.deepcopy(file_path_or_dict['meta_archs']) | ||||
|       # This is a dict mapping each architecture to a dict, where the key is #epochs and the value is ArchResults | ||||
|       self.arch2infos_dict = OrderedDict() | ||||
|     self._avaliable_hps = set(['12', '200']) | ||||
|       self._avaliable_hps = set() | ||||
|       for xkey in sorted(list(file_path_or_dict['arch2infos'].keys())): | ||||
|         all_info = file_path_or_dict['arch2infos'][xkey] | ||||
|         hp2archres = OrderedDict() | ||||
|       # self.arch2infos_less[xkey] = ArchResults.create_from_state_dict( all_info['less'] ) | ||||
|       # self.arch2infos_full[xkey] = ArchResults.create_from_state_dict( all_info['full'] ) | ||||
|       hp2archres['12'] = ArchResults.create_from_state_dict(all_info['less']) | ||||
|       hp2archres['200'] = ArchResults.create_from_state_dict(all_info['full']) | ||||
|         for hp_key, results in all_infos.items(): | ||||
|           hp2archres[hp_key] = ArchResults.create_from_state_dict(results) | ||||
|           self._avaliable_hps.add(hp_key)  # save the avaliable hyper-parameter | ||||
|         self.arch2infos_dict[xkey] = hp2archres | ||||
|     self.evaluated_indexes = sorted(list(file_path_or_dict['evaluated_indexes'])) | ||||
|       self.evaluated_indexes = list(file_path_or_dict['evaluated_indexes']) | ||||
|     elif self.archive_dir is not None: | ||||
|       benchmark_meta = pickle_load('{:}/meta.{:}'.format(self.archive_dir, PICKLE_EXT)) | ||||
|       self.meta_archs = copy.deepcopy(benchmark_meta['meta_archs']) | ||||
|       self.arch2infos_dict = OrderedDict() | ||||
|       self._avaliable_hps = set() | ||||
|       self.evaluated_indexes = set() | ||||
|     else: | ||||
|       raise ValueError('file_path_or_dict [{:}] must be a dict or archive_dir must be set'.format(type(file_path_or_dict))) | ||||
|     self.archstr2index = {} | ||||
|     for idx, arch in enumerate(self.meta_archs): | ||||
|       assert arch not in self.archstr2index, 'This [{:}]-th arch {:} already in the dict ({:}).'.format(idx, arch, self.archstr2index[arch]) | ||||
|       self.archstr2index[arch] = idx | ||||
|     if self.verbose: | ||||
|       print('{:} Create NATS-Bench (topology) done with {:}/{:} architectures avaliable.'.format( | ||||
|             time_string(), len(self.evaluated_indexes), len(self.meta_archs))) | ||||
|  | ||||
|   def reload(self, archive_root: Text = None, index: int = None): | ||||
|     """Overwrite all information of the 'index'-th architecture in the search space. | ||||
|          It will load its data from 'archive_root'. | ||||
|     """ | ||||
|     if self.verbose: | ||||
|       print('{:} Call clear_params with archive_root={:} and index={:}'.format( | ||||
|             time_string(), archive_root, index)) | ||||
|     if archive_root is None: | ||||
|       archive_root = os.path.join(os.environ['TORCH_HOME'], ALL_ARCHIVE_DIRS[-1]) | ||||
|     assert os.path.isdir(archive_root), 'invalid directory : {:}'.format(archive_root) | ||||
|       archive_root = os.path.join(os.environ['TORCH_HOME'], '{:}-full'.format(ALL_BASE_NAMES[-1])) | ||||
|       if not os.path.isdir(archive_root): | ||||
|         warnings.warn('The input archive_root is None and the default archive_root path ({:}) does not exist, try to use self.archive_dir.'.format(archive_root)) | ||||
|       archive_root = self.archive_dir | ||||
|     if archive_root is None or not os.path.isdir(archive_root): | ||||
|       raise ValueError('Invalid archive_root : {:}'.format(archive_root)) | ||||
|     if index is None: | ||||
|       indexes = list(range(len(self))) | ||||
|     else: | ||||
|       indexes = [index] | ||||
|     for idx in indexes: | ||||
|       assert 0 <= idx < len(self.meta_archs), 'invalid index of {:}'.format(idx) | ||||
|       xfile_path = os.path.join(archive_root, '{:06d}-FULL.pth'.format(idx)) | ||||
|       xfile_path = os.path.join(archive_root, '{:06d}.{:}'.format(idx, PICKLE_EXT)) | ||||
|       if not os.path.isfile(xfile_path): | ||||
|         xfile_path = os.path.join(archive_root, '{:d}.{:}'.format(idx, PICKLE_EXT)) | ||||
|       assert os.path.isfile(xfile_path), 'invalid data path : {:}'.format(xfile_path) | ||||
|       xdata = torch.load(xfile_path, map_location='cpu') | ||||
|       assert isinstance(xdata, dict) and 'full' in xdata and 'less' in xdata, 'invalid format of data in {:}'.format(xfile_path) | ||||
|       xdata = pickle_load(xfile_path) | ||||
|       assert isinstance(xdata, dict), 'invalid format of data in {:}'.format(xfile_path) | ||||
|       self.evaluated_indexes.add(idx) | ||||
|       hp2archres = OrderedDict() | ||||
|       hp2archres['12'] = ArchResults.create_from_state_dict(xdata['less']) | ||||
|       hp2archres['200'] = ArchResults.create_from_state_dict(xdata['full']) | ||||
|       for hp_key, results in xdata.items(): | ||||
|         hp2archres[hp_key] = ArchResults.create_from_state_dict(results) | ||||
|         self._avaliable_hps.add(hp_key) | ||||
|       self.arch2infos_dict[idx] = hp2archres | ||||
|  | ||||
|   def query_info_str_by_arch(self, arch, hp: Text='12'): | ||||
| @@ -122,7 +155,7 @@ class NATStopology(NASBenchMetaAPI): | ||||
|         The difference between these three configurations are the number of training epochs. | ||||
|     """ | ||||
|     if self.verbose: | ||||
|       print('Call query_info_str_by_arch with arch={:} and hp={:}'.format(arch, hp)) | ||||
|       print('{:} Call query_info_str_by_arch with arch={:} and hp={:}'.format(time_string(), arch, hp)) | ||||
|     return self._query_info_str_by_arch(arch, hp, print_information) | ||||
|  | ||||
|   # obtain the metric for the `index`-th architecture | ||||
| @@ -142,8 +175,10 @@ class NATStopology(NASBenchMetaAPI): | ||||
|   #   When is_random=False, the performanceo of all trials will be averaged. | ||||
|   def get_more_info(self, index, dataset, iepoch=None, hp='12', is_random=True): | ||||
|     if self.verbose: | ||||
|       print('Call the get_more_info function with index={:}, dataset={:}, iepoch={:}, hp={:}, and is_random={:}.'.format(index, dataset, iepoch, hp, is_random)) | ||||
|       print('{:} Call the get_more_info function with index={:}, dataset={:}, iepoch={:}, hp={:}, and is_random={:}.'.format( | ||||
|             time_string(), index, dataset, iepoch, hp, is_random)) | ||||
|     index = self.query_index_by_arch(index)  # To avoid the input is a string or an instance of a arch object | ||||
|     self._prepare_info(index) | ||||
|     if index not in self.arch2infos_dict: | ||||
|       raise ValueError('Did not find {:} from arch2infos_dict.'.format(index)) | ||||
|     archresult = self.arch2infos_dict[index][str(hp)] | ||||
|   | ||||
| @@ -10,9 +10,9 @@ | ||||
| # History: | ||||
| # [2020.07.31] The first version, where most content reused nas_201_api/api_utils.py | ||||
| # | ||||
| import os, abc, copy, random, numpy as np | ||||
| import os, abc, time, copy, random, numpy as np | ||||
| import bz2, pickle | ||||
| import importlib, warnings | ||||
| import warnings | ||||
| from typing import List, Text, Union, Dict, Optional | ||||
| from collections import OrderedDict, defaultdict | ||||
|  | ||||
| @@ -36,6 +36,12 @@ def pickle_load(file_path, ext='.pbz2'): | ||||
|     return pickle.load(cfile) | ||||
|  | ||||
|  | ||||
| def time_string(): | ||||
|   ISOTIMEFORMAT='%Y-%m-%d %X' | ||||
|   string = '[{:}]'.format(time.strftime( ISOTIMEFORMAT, time.gmtime(time.time()) )) | ||||
|   return string | ||||
|  | ||||
|  | ||||
| def remap_dataset_set_names(dataset, metric_on_set, verbose=False): | ||||
|   """re-map the metric_on_set to internal keys""" | ||||
|   if verbose: | ||||
| @@ -136,7 +142,7 @@ class NASBenchMetaAPI(metaclass=abc.ABCMeta): | ||||
|         Otherwise, it will return an int in [0, the-number-of-candidates-in-the-search-space). | ||||
|     """ | ||||
|     if self.verbose: | ||||
|       print('Call query_index_by_arch with arch={:}'.format(arch)) | ||||
|       print('{:} Call query_index_by_arch with arch={:}'.format(time_string(), arch)) | ||||
|     if isinstance(arch, int): | ||||
|       if 0 <= arch < len(self): | ||||
|         return arch | ||||
| @@ -162,13 +168,13 @@ class NASBenchMetaAPI(metaclass=abc.ABCMeta): | ||||
|         self.reload(self.archive_dir, index) | ||||
|       elif not self.fast_mode: | ||||
|         if self.verbose: | ||||
|           print('Call _prepare_info with index={:} skip because it is not the fast mode.'.format(index)) | ||||
|           print('{:} Call _prepare_info with index={:} skip because it is not the fast mode.'.format(time_string(), index)) | ||||
|       else: | ||||
|         raise ValueError('Invalid status: fast_mode={:} and archive_dir={:}'.format(self.fast_mode, self.archive_dir)) | ||||
|     else: | ||||
|       assert index in self.evaluated_indexes, 'The index of {:} is not in self.evaluated_indexes, there must be something wrong.'.format(index) | ||||
|       if self.verbose: | ||||
|         print('Call _prepare_info with index={:} skip because it is in arch2infos_dict'.format(index)) | ||||
|         print('{:} Call _prepare_info with index={:} skip because it is in arch2infos_dict'.format(time_string(), index)) | ||||
|  | ||||
|   @abc.abstractmethod | ||||
|   def reload(self, archive_root: Text = None, index: int = None): | ||||
| @@ -185,7 +191,7 @@ class NASBenchMetaAPI(metaclass=abc.ABCMeta): | ||||
|         -- '01' or '12' or '90': clear all the weights in arch2infos_dict[index][hp]. | ||||
|     """ | ||||
|     if self.verbose: | ||||
|       print('Call clear_params with index={:} and hp={:}'.format(index, hp)) | ||||
|       print('{:} Call clear_params with index={:} and hp={:}'.format(time_string(), index, hp)) | ||||
|     if index not in self.arch2infos_dict: | ||||
|       warnings.warn('The {:}-th architecture is not in the benchmark data yet, no need to clear params.'.format(index)) | ||||
|     elif hp is None: | ||||
| @@ -243,7 +249,7 @@ class NASBenchMetaAPI(metaclass=abc.ABCMeta): | ||||
|         -- ImageNet16-120 : training the model on the ImageNet16-120 training set. | ||||
|     """ | ||||
|     if self.verbose: | ||||
|       print('Call query_by_index with arch_index={:}, dataname={:}, hp={:}'.format(arch_index, dataname, hp)) | ||||
|       print('{:} Call query_by_index with arch_index={:}, dataname={:}, hp={:}'.format(time_string(), arch_index, dataname, hp)) | ||||
|     info = self.query_meta_info_by_index(arch_index, hp) | ||||
|     if dataname is None: return info | ||||
|     else: | ||||
| @@ -254,7 +260,8 @@ class NASBenchMetaAPI(metaclass=abc.ABCMeta): | ||||
|   def find_best(self, dataset, metric_on_set, FLOP_max=None, Param_max=None, hp: Text = '12'): | ||||
|     """Find the architecture with the highest accuracy based on some constraints.""" | ||||
|     if self.verbose: | ||||
|       print('Call find_best with dataset={:}, metric_on_set={:}, hp={:} | with #FLOPs < {:} and #Params < {:}'.format(dataset, metric_on_set, hp, FLOP_max, Param_max)) | ||||
|       print('{:} Call find_best with dataset={:}, metric_on_set={:}, hp={:} | with #FLOPs < {:} and #Params < {:}'.format( | ||||
|             time_string(), dataset, metric_on_set, hp, FLOP_max, Param_max)) | ||||
|     dataset, metric_on_set = remap_dataset_set_names(dataset, metric_on_set, self.verbose) | ||||
|     best_index, highest_accuracy = -1, None | ||||
|     evaluated_indexes = sorted(list(self.evaluated_indexes)) | ||||
| @@ -287,7 +294,7 @@ class NASBenchMetaAPI(metaclass=abc.ABCMeta): | ||||
|         -- 200 : train the model by 200 epochs | ||||
|     """ | ||||
|     if self.verbose: | ||||
|       print('Call the get_net_param function with index={:}, dataset={:}, seed={:}, hp={:}'.format(index, dataset, seed, hp)) | ||||
|       print('{:} Call the get_net_param function with index={:}, dataset={:}, seed={:}, hp={:}'.format(time_string(), index, dataset, seed, hp)) | ||||
|     info = self.query_meta_info_by_index(index, hp) | ||||
|     return info.get_net_param(dataset, seed) | ||||
|  | ||||
| @@ -304,7 +311,7 @@ class NASBenchMetaAPI(metaclass=abc.ABCMeta): | ||||
|       config = api.get_net_config(128, 'cifar10') | ||||
|     """ | ||||
|     if self.verbose: | ||||
|       print('Call the get_net_config function with index={:}, dataset={:}.'.format(index, dataset)) | ||||
|       print('{:} Call the get_net_config function with index={:}, dataset={:}.'.format(time_string(), index, dataset)) | ||||
|     self._prepare_info(index) | ||||
|     if index in self.arch2infos_dict: | ||||
|       info = self.arch2infos_dict[index] | ||||
| @@ -318,7 +325,7 @@ class NASBenchMetaAPI(metaclass=abc.ABCMeta): | ||||
|   def get_cost_info(self, index: int, dataset: Text, hp: Text = '12') -> Dict[Text, float]: | ||||
|     """To obtain the cost metric for the `index`-th architecture on a dataset.""" | ||||
|     if self.verbose: | ||||
|       print('Call the get_cost_info function with index={:}, dataset={:}, and hp={:}.'.format(index, dataset, hp)) | ||||
|       print('{:} Call the get_cost_info function with index={:}, dataset={:}, and hp={:}.'.format(time_string(), index, dataset, hp)) | ||||
|     self._prepare_info(index) | ||||
|     info = self.query_meta_info_by_index(index, hp) | ||||
|     return info.get_compute_costs(dataset) | ||||
| @@ -331,7 +338,7 @@ class NASBenchMetaAPI(metaclass=abc.ABCMeta): | ||||
|     :return: return a float value in seconds | ||||
|     """ | ||||
|     if self.verbose: | ||||
|       print('Call the get_latency function with index={:}, dataset={:}, and hp={:}.'.format(index, dataset, hp)) | ||||
|       print('{:} Call the get_latency function with index={:}, dataset={:}, and hp={:}.'.format(time_string(), index, dataset, hp)) | ||||
|     cost_dict = self.get_cost_info(index, dataset, hp) | ||||
|     return cost_dict['latency'] | ||||
|  | ||||
|   | ||||
		Reference in New Issue
	
	Block a user