Update NATS-Bench (sss version 1.0)
This commit is contained in:
		| @@ -110,6 +110,7 @@ If you find that this project helps your research, please consider citing some o | ||||
|   title     = {Network Pruning via Transformable Architecture Search}, | ||||
|   author    = {Dong, Xuanyi and Yang, Yi}, | ||||
|   booktitle = {Neural Information Processing Systems (NeurIPS)}, | ||||
|   pages     = {760--771}, | ||||
|   year      = {2019} | ||||
| } | ||||
| @inproceedings{dong2019one, | ||||
|   | ||||
| @@ -64,8 +64,7 @@ | ||||
|     <td align="center" valign="middle"> <a href="https://xuanyidong.com/assets/projects/NATS-Bench"> NATS-Bench: Benchmarking NAS algorithms for Architecture Topology and Size</a> </td> | ||||
|     <td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/master/docs/NATS-Bench.md">NATS-Bench.md</a> </td> | ||||
|     </tr> | ||||
|  | ||||
|     <tr> <!-- (6-th row) --> | ||||
|     <tr> <!-- (7-th row) --> | ||||
|     <td align="center" valign="middle"> ... </td> | ||||
|     <td align="center" valign="middle"> ENAS / REA / REINFORCE / BOHB </td> | ||||
|     <td align="center" valign="middle"> Please check the original papers. </td> | ||||
| @@ -111,6 +110,7 @@ Some methods use knowledge distillation (KD), which require pre-trained models. | ||||
|   author    = {Dong, Xuanyi and Yang, Yi}, | ||||
|   booktitle = {Neural Information Processing Systems (NeurIPS)}, | ||||
|   year      = {2019} | ||||
|   pages     = {760--771}, | ||||
| } | ||||
| @inproceedings{dong2019one, | ||||
|   title     = {One-Shot Neural Architecture Search via Self-Evaluated Template Network}, | ||||
|   | ||||
| @@ -16,11 +16,17 @@ This facilitates a much larger community of researchers to focus on developing b | ||||
|  | ||||
| ## The Procedure of Creating NATS-Bench | ||||
|  | ||||
| 1, train all architecture candidate in the size search space with 90 epochs and use the random seed of `777`. | ||||
| ### The Size Search Space | ||||
|  | ||||
| The following command will train all architecture candidate in the size search space with 90 epochs and use the random seed of `777`. If you want to use a different number of training epochs, please replace `90` with it, such as `01` or `12`. If you want to use a different  | ||||
| ``` | ||||
| bash ./scripts/NATS-Bench/train-shapes.sh 00000-32767 90 777 | ||||
| ``` | ||||
| The checkpoint of all candidates are located at `output/NATS-Bench-size` by default | ||||
| The checkpoint of all candidates are located at `output/NATS-Bench-size` by default. | ||||
|  | ||||
|  | ||||
| ### The Topology Search Space | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|   | ||||
| @@ -3,6 +3,16 @@ | ||||
| ############################################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.07                          # | ||||
| ############################################################################## | ||||
| # This file is used to train (all) architecture candidate in the size search # | ||||
| # space in NATS-Bench (sss) with different hyper-parameters.                 # | ||||
| # When use mode=new, it will automatically detect whether the checkpoint of  # | ||||
| # a trial exists, if so, it will skip this trial. When use mode=cover, it    # | ||||
| # will ignore the (possible) existing checkpoint, run each trial, and save.  # | ||||
| # (NOTE): the topology for all candidates in sss is fixed as:                ###################### | ||||
| # |nor_conv_3x3~0|+|nor_conv_3x3~0|nor_conv_3x3~1|+|skip_connect~0|nor_conv_3x3~1|nor_conv_3x3~2| # | ||||
| ################################################################################################### | ||||
| # Please use the script of scripts/NATS-Bench/train-shapes.sh to run.        # | ||||
| ############################################################################## | ||||
| import os, sys, time, torch, argparse | ||||
| from typing import List, Text, Dict, Any | ||||
| from PIL     import ImageFile | ||||
|   | ||||
							
								
								
									
										323
									
								
								exps/NATS-Bench/main-tss.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										323
									
								
								exps/NATS-Bench/main-tss.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,323 @@ | ||||
| ############################################################################## | ||||
| # NATS-Bench: Benchmarking NAS algorithms for Architecture Topology and Size # | ||||
| ############################################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.07                          # | ||||
| ############################################################################## | ||||
| # This file is used to train (all) architecture candidate in the topology    # | ||||
| # search space in NATS-Bench (tss) with different hyper-parameters.          # | ||||
| # When use mode=meta, | ||||
| ### | ||||
| ############################################################################## | ||||
| # 1, generate meta data:                                                     # | ||||
| # python ./exps/NATS-Bench/main-tss.py --mode meta                           # | ||||
| ############################################################################## | ||||
| import os, sys, time, torch, random, argparse | ||||
| from PIL     import ImageFile | ||||
| ImageFile.LOAD_TRUNCATED_IMAGES = True | ||||
| from copy    import deepcopy | ||||
| from pathlib import Path | ||||
|  | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
| from config_utils import load_config | ||||
| from procedures   import bench_evaluate_for_seed | ||||
| from procedures   import get_machine_info | ||||
| from datasets     import get_datasets | ||||
| from log_utils    import Logger, AverageMeter, time_string, convert_secs2time | ||||
| from models       import CellStructure, CellArchitectures, get_search_spaces | ||||
|  | ||||
|  | ||||
| def evaluate_all_datasets(arch, datasets, xpaths, splits, use_less, seed, arch_config, workers, logger): | ||||
|   machine_info, arch_config = get_machine_info(), deepcopy(arch_config) | ||||
|   all_infos = {'info': machine_info} | ||||
|   all_dataset_keys = [] | ||||
|   # look all the datasets | ||||
|   for dataset, xpath, split in zip(datasets, xpaths, splits): | ||||
|     # train valid data | ||||
|     train_data, valid_data, xshape, class_num = get_datasets(dataset, xpath, -1) | ||||
|     # load the configuration | ||||
|     if dataset == 'cifar10' or dataset == 'cifar100': | ||||
|       if use_less: config_path = 'configs/nas-benchmark/LESS.config' | ||||
|       else       : config_path = 'configs/nas-benchmark/CIFAR.config' | ||||
|       split_info  = load_config('configs/nas-benchmark/cifar-split.txt', None, None) | ||||
|     elif dataset.startswith('ImageNet16'): | ||||
|       if use_less: config_path = 'configs/nas-benchmark/LESS.config' | ||||
|       else       : config_path = 'configs/nas-benchmark/ImageNet-16.config' | ||||
|       split_info  = load_config('configs/nas-benchmark/{:}-split.txt'.format(dataset), None, None) | ||||
|     else: | ||||
|       raise ValueError('invalid dataset : {:}'.format(dataset)) | ||||
|     config = load_config(config_path, \ | ||||
|                             {'class_num': class_num, | ||||
|                              'xshape'   : xshape}, \ | ||||
|                             logger) | ||||
|     # check whether use splited validation set | ||||
|     if bool(split): | ||||
|       assert dataset == 'cifar10' | ||||
|       ValLoaders = {'ori-test': torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, shuffle=False, num_workers=workers, pin_memory=True)} | ||||
|       assert len(train_data) == len(split_info.train) + len(split_info.valid), 'invalid length : {:} vs {:} + {:}'.format(len(train_data), len(split_info.train), len(split_info.valid)) | ||||
|       train_data_v2 = deepcopy(train_data) | ||||
|       train_data_v2.transform = valid_data.transform | ||||
|       valid_data = train_data_v2 | ||||
|       # data loader | ||||
|       train_loader = torch.utils.data.DataLoader(train_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(split_info.train), num_workers=workers, pin_memory=True) | ||||
|       valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(split_info.valid), num_workers=workers, pin_memory=True) | ||||
|       ValLoaders['x-valid'] = valid_loader | ||||
|     else: | ||||
|       # data loader | ||||
|       train_loader = torch.utils.data.DataLoader(train_data, batch_size=config.batch_size, shuffle=True , num_workers=workers, pin_memory=True) | ||||
|       valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, shuffle=False, num_workers=workers, pin_memory=True) | ||||
|       if dataset == 'cifar10': | ||||
|         ValLoaders = {'ori-test': valid_loader} | ||||
|       elif dataset == 'cifar100': | ||||
|         cifar100_splits = load_config('configs/nas-benchmark/cifar100-test-split.txt', None, None) | ||||
|         ValLoaders = {'ori-test': valid_loader, | ||||
|                       'x-valid' : torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xvalid), num_workers=workers, pin_memory=True), | ||||
|                       'x-test'  : torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xtest ), num_workers=workers, pin_memory=True) | ||||
|                      } | ||||
|       elif dataset == 'ImageNet16-120': | ||||
|         imagenet16_splits = load_config('configs/nas-benchmark/imagenet-16-120-test-split.txt', None, None) | ||||
|         ValLoaders = {'ori-test': valid_loader, | ||||
|                       'x-valid' : torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet16_splits.xvalid), num_workers=workers, pin_memory=True), | ||||
|                       'x-test'  : torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet16_splits.xtest ), num_workers=workers, pin_memory=True) | ||||
|                      } | ||||
|       else: | ||||
|         raise ValueError('invalid dataset : {:}'.format(dataset)) | ||||
|  | ||||
|     dataset_key = '{:}'.format(dataset) | ||||
|     if bool(split): dataset_key = dataset_key + '-valid' | ||||
|     logger.log('Evaluate ||||||| {:10s} ||||||| Train-Num={:}, Valid-Num={:}, Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(dataset_key, len(train_data), len(valid_data), len(train_loader), len(valid_loader), config.batch_size)) | ||||
|     logger.log('Evaluate ||||||| {:10s} ||||||| Config={:}'.format(dataset_key, config)) | ||||
|     for key, value in ValLoaders.items(): | ||||
|       logger.log('Evaluate ---->>>> {:10s} with {:} batchs'.format(key, len(value))) | ||||
|     results = bench_evaluate_for_seed(arch_config, config, train_loader, ValLoaders, seed, logger) | ||||
|     all_infos[dataset_key] = results | ||||
|     all_dataset_keys.append( dataset_key ) | ||||
|   all_infos['all_dataset_keys'] = all_dataset_keys | ||||
|   return all_infos | ||||
|  | ||||
|  | ||||
| def main(save_dir, workers, datasets, xpaths, splits, use_less, srange, arch_index, seeds, cover_mode, meta_info, arch_config): | ||||
|   assert torch.cuda.is_available(), 'CUDA is not available.' | ||||
|   torch.backends.cudnn.enabled   = True | ||||
|   #torch.backends.cudnn.benchmark = True | ||||
|   torch.backends.cudnn.deterministic = True | ||||
|   torch.set_num_threads( workers ) | ||||
|  | ||||
|   assert len(srange) == 2 and 0 <= srange[0] <= srange[1], 'invalid srange : {:}'.format(srange) | ||||
|    | ||||
|   if use_less: | ||||
|     sub_dir = Path(save_dir) / '{:06d}-{:06d}-C{:}-N{:}-LESS'.format(srange[0], srange[1], arch_config['channel'], arch_config['num_cells']) | ||||
|   else: | ||||
|     sub_dir = Path(save_dir) / '{:06d}-{:06d}-C{:}-N{:}'.format(srange[0], srange[1], arch_config['channel'], arch_config['num_cells']) | ||||
|   logger  = Logger(str(sub_dir), 0, False) | ||||
|  | ||||
|   all_archs = meta_info['archs'] | ||||
|   assert srange[1] < meta_info['total'], 'invalid range : {:}-{:} vs. {:}'.format(srange[0], srange[1], meta_info['total']) | ||||
|   assert arch_index == -1 or srange[0] <= arch_index <= srange[1], 'invalid range : {:} vs. {:} vs. {:}'.format(srange[0], arch_index, srange[1]) | ||||
|   if arch_index == -1: | ||||
|     to_evaluate_indexes = list(range(srange[0], srange[1]+1)) | ||||
|   else: | ||||
|     to_evaluate_indexes = [arch_index] | ||||
|   logger.log('xargs : seeds      = {:}'.format(seeds)) | ||||
|   logger.log('xargs : arch_index = {:}'.format(arch_index)) | ||||
|   logger.log('xargs : cover_mode = {:}'.format(cover_mode)) | ||||
|   logger.log('-'*100) | ||||
|  | ||||
|   logger.log('Start evaluating range =: {:06d} vs. {:06d} vs. {:06d} / {:06d} with cover-mode={:}'.format(srange[0], arch_index, srange[1], meta_info['total'], cover_mode)) | ||||
|   for i, (dataset, xpath, split) in enumerate(zip(datasets, xpaths, splits)): | ||||
|     logger.log('--->>> Evaluate {:}/{:} : dataset={:9s}, path={:}, split={:}'.format(i, len(datasets), dataset, xpath, split)) | ||||
|   logger.log('--->>> architecture config : {:}'.format(arch_config)) | ||||
|    | ||||
|  | ||||
|   start_time, epoch_time = time.time(), AverageMeter() | ||||
|   for i, index in enumerate(to_evaluate_indexes): | ||||
|     arch = all_archs[index] | ||||
|     logger.log('\n{:} evaluate {:06d}/{:06d} ({:06d}/{:06d})-th architecture [seeds={:}] {:}'.format('-'*15, i, len(to_evaluate_indexes), index, meta_info['total'], seeds, '-'*15)) | ||||
|     #logger.log('{:} {:} {:}'.format('-'*15, arch.tostr(), '-'*15)) | ||||
|     logger.log('{:} {:} {:}'.format('-'*15, arch, '-'*15)) | ||||
|    | ||||
|     # test this arch on different datasets with different seeds | ||||
|     has_continue = False | ||||
|     for seed in seeds: | ||||
|       to_save_name = sub_dir / 'arch-{:06d}-seed-{:04d}.pth'.format(index, seed) | ||||
|       if to_save_name.exists(): | ||||
|         if cover_mode: | ||||
|           logger.log('Find existing file : {:}, remove it before evaluation'.format(to_save_name)) | ||||
|           os.remove(str(to_save_name)) | ||||
|         else         : | ||||
|           logger.log('Find existing file : {:}, skip this evaluation'.format(to_save_name)) | ||||
|           has_continue = True | ||||
|           continue | ||||
|       results = evaluate_all_datasets(CellStructure.str2structure(arch), \ | ||||
|                                         datasets, xpaths, splits, use_less, seed, \ | ||||
|                                         arch_config, workers, logger) | ||||
|       torch.save(results, to_save_name) | ||||
|       logger.log('{:} --evaluate-- {:06d}/{:06d} ({:06d}/{:06d})-th seed={:} done, save into {:}'.format('-'*15, i, len(to_evaluate_indexes), index, meta_info['total'], seed, to_save_name)) | ||||
|     # measure elapsed time | ||||
|     if not has_continue: epoch_time.update(time.time() - start_time) | ||||
|     start_time = time.time() | ||||
|     need_time = 'Time Left: {:}'.format( convert_secs2time(epoch_time.avg * (len(to_evaluate_indexes)-i-1), True) ) | ||||
|     logger.log('This arch costs : {:}'.format( convert_secs2time(epoch_time.val, True) )) | ||||
|     logger.log('{:}'.format('*'*100)) | ||||
|     logger.log('{:}   {:74s}   {:}'.format('*'*10, '{:06d}/{:06d} ({:06d}/{:06d})-th done, left {:}'.format(i, len(to_evaluate_indexes), index, meta_info['total'], need_time), '*'*10)) | ||||
|     logger.log('{:}'.format('*'*100)) | ||||
|  | ||||
|   logger.close() | ||||
|  | ||||
|  | ||||
| def train_single_model(save_dir, workers, datasets, xpaths, splits, use_less, seeds, model_str, arch_config): | ||||
|   assert torch.cuda.is_available(), 'CUDA is not available.' | ||||
|   torch.backends.cudnn.enabled   = True | ||||
|   torch.backends.cudnn.deterministic = True | ||||
|   #torch.backends.cudnn.benchmark = True | ||||
|   torch.set_num_threads( workers ) | ||||
|    | ||||
|   save_dir = Path(save_dir) / 'specifics' / '{:}-{:}-{:}-{:}'.format('LESS' if use_less else 'FULL', model_str, arch_config['channel'], arch_config['num_cells']) | ||||
|   logger   = Logger(str(save_dir), 0, False) | ||||
|   if model_str in CellArchitectures: | ||||
|     arch   = CellArchitectures[model_str] | ||||
|     logger.log('The model string is found in pre-defined architecture dict : {:}'.format(model_str)) | ||||
|   else: | ||||
|     try: | ||||
|       arch = CellStructure.str2structure(model_str) | ||||
|     except: | ||||
|       raise ValueError('Invalid model string : {:}. It can not be found or parsed.'.format(model_str)) | ||||
|   assert arch.check_valid_op(get_search_spaces('cell', 'full')), '{:} has the invalid op.'.format(arch) | ||||
|   logger.log('Start train-evaluate {:}'.format(arch.tostr())) | ||||
|   logger.log('arch_config : {:}'.format(arch_config)) | ||||
|  | ||||
|   start_time, seed_time = time.time(), AverageMeter() | ||||
|   for _is, seed in enumerate(seeds): | ||||
|     logger.log('\nThe {:02d}/{:02d}-th seed is {:} ----------------------<.>----------------------'.format(_is, len(seeds), seed)) | ||||
|     to_save_name = save_dir / 'seed-{:04d}.pth'.format(seed) | ||||
|     if to_save_name.exists(): | ||||
|       logger.log('Find the existing file {:}, directly load!'.format(to_save_name)) | ||||
|       checkpoint = torch.load(to_save_name) | ||||
|     else: | ||||
|       logger.log('Does not find the existing file {:}, train and evaluate!'.format(to_save_name)) | ||||
|       checkpoint = evaluate_all_datasets(arch, datasets, xpaths, splits, use_less, seed, arch_config, workers, logger) | ||||
|       torch.save(checkpoint, to_save_name) | ||||
|     # log information | ||||
|     logger.log('{:}'.format(checkpoint['info'])) | ||||
|     all_dataset_keys = checkpoint['all_dataset_keys'] | ||||
|     for dataset_key in all_dataset_keys: | ||||
|       logger.log('\n{:} dataset : {:} {:}'.format('-'*15, dataset_key, '-'*15)) | ||||
|       dataset_info = checkpoint[dataset_key] | ||||
|       #logger.log('Network ==>\n{:}'.format( dataset_info['net_string'] )) | ||||
|       logger.log('Flops = {:} MB, Params = {:} MB'.format(dataset_info['flop'], dataset_info['param'])) | ||||
|       logger.log('config : {:}'.format(dataset_info['config'])) | ||||
|       logger.log('Training State (finish) = {:}'.format(dataset_info['finish-train'])) | ||||
|       last_epoch = dataset_info['total_epoch'] - 1 | ||||
|       train_acc1es, train_acc5es = dataset_info['train_acc1es'], dataset_info['train_acc5es'] | ||||
|       valid_acc1es, valid_acc5es = dataset_info['valid_acc1es'], dataset_info['valid_acc5es'] | ||||
|       logger.log('Last Info : Train = Acc@1 {:.2f}% Acc@5 {:.2f}% Error@1 {:.2f}%, Test = Acc@1 {:.2f}% Acc@5 {:.2f}% Error@1 {:.2f}%'.format(train_acc1es[last_epoch], train_acc5es[last_epoch], 100-train_acc1es[last_epoch], valid_acc1es[last_epoch], valid_acc5es[last_epoch], 100-valid_acc1es[last_epoch])) | ||||
|     # measure elapsed time | ||||
|     seed_time.update(time.time() - start_time) | ||||
|     start_time = time.time() | ||||
|     need_time = 'Time Left: {:}'.format( convert_secs2time(seed_time.avg * (len(seeds)-_is-1), True) ) | ||||
|     logger.log('\n<<<***>>> The {:02d}/{:02d}-th seed is {:} <finish> other procedures need {:}'.format(_is, len(seeds), seed, need_time)) | ||||
|   logger.close() | ||||
|  | ||||
|  | ||||
| def generate_meta_info(save_dir, max_node, divide=40): | ||||
|   aa_nas_bench_ss = get_search_spaces('cell', 'nas-bench-201') | ||||
|   archs = CellStructure.gen_all(aa_nas_bench_ss, max_node, False) | ||||
|   print ('There are {:} archs vs {:}.'.format(len(archs), len(aa_nas_bench_ss) ** ((max_node-1)*max_node/2))) | ||||
|  | ||||
|   random.seed( 88 ) # please do not change this line for reproducibility | ||||
|   random.shuffle( archs ) | ||||
|   # to test fixed-random shuffle  | ||||
|   #print ('arch [0] : {:}\n---->>>>   {:}'.format( archs[0], archs[0].tostr() )) | ||||
|   #print ('arch [9] : {:}\n---->>>>   {:}'.format( archs[9], archs[9].tostr() )) | ||||
|   assert archs[0  ].tostr() == '|avg_pool_3x3~0|+|nor_conv_1x1~0|skip_connect~1|+|nor_conv_1x1~0|skip_connect~1|skip_connect~2|', 'please check the 0-th architecture : {:}'.format(archs[0]) | ||||
|   assert archs[9  ].tostr() == '|avg_pool_3x3~0|+|none~0|none~1|+|skip_connect~0|none~1|nor_conv_3x3~2|', 'please check the 9-th architecture : {:}'.format(archs[9]) | ||||
|   assert archs[123].tostr() == '|avg_pool_3x3~0|+|avg_pool_3x3~0|nor_conv_1x1~1|+|none~0|avg_pool_3x3~1|nor_conv_3x3~2|', 'please check the 123-th architecture : {:}'.format(archs[123]) | ||||
|   total_arch = len(archs) | ||||
|    | ||||
|   num = 50000 | ||||
|   indexes_5W = list(range(num)) | ||||
|   random.seed( 1021 ) | ||||
|   random.shuffle( indexes_5W ) | ||||
|   train_split = sorted( list(set(indexes_5W[:num//2])) ) | ||||
|   valid_split = sorted( list(set(indexes_5W[num//2:])) ) | ||||
|   assert len(train_split) + len(valid_split) == num | ||||
|   assert train_split[0] == 0 and train_split[10] == 26 and train_split[111] == 203 and valid_split[0] == 1 and valid_split[10] == 18 and valid_split[111] == 242, '{:} {:} {:} - {:} {:} {:}'.format(train_split[0], train_split[10], train_split[111], valid_split[0], valid_split[10], valid_split[111]) | ||||
|   splits = {num: {'train': train_split, 'valid': valid_split} } | ||||
|  | ||||
|   info = {'archs' : [x.tostr() for x in archs], | ||||
|           'total' : total_arch, | ||||
|           'max_node' : max_node, | ||||
|           'splits': splits} | ||||
|  | ||||
|   save_dir = Path(save_dir) | ||||
|   save_dir.mkdir(parents=True, exist_ok=True) | ||||
|   save_name = save_dir / 'meta-node-{:}.pth'.format(max_node) | ||||
|   assert not save_name.exists(), '{:} already exist'.format(save_name) | ||||
|   torch.save(info, save_name) | ||||
|   print ('save the meta file into {:}'.format(save_name)) | ||||
|  | ||||
|   """ | ||||
|   script_name_full = save_dir / 'BENCH-201-N{:}.opt-full.script'.format(max_node) | ||||
|   script_name_less = save_dir / 'BENCH-201-N{:}.opt-less.script'.format(max_node) | ||||
|   full_file = open(str(script_name_full), 'w') | ||||
|   less_file = open(str(script_name_less), 'w') | ||||
|   gaps = total_arch // divide | ||||
|   for start in range(0, total_arch, gaps): | ||||
|     xend = min(start+gaps, total_arch) | ||||
|     full_file.write('bash ./scripts-search/NAS-Bench-201/train-models.sh 0 {:5d} {:5d} -1 \'777 888 999\'\n'.format(start, xend-1)) | ||||
|     less_file.write('bash ./scripts-search/NAS-Bench-201/train-models.sh 1 {:5d} {:5d} -1 \'777 888 999\'\n'.format(start, xend-1)) | ||||
|   print ('save the training script into {:} and {:}'.format(script_name_full, script_name_less)) | ||||
|   full_file.close() | ||||
|   less_file.close() | ||||
|  | ||||
|   script_name = save_dir / 'meta-node-{:}.cal-script.txt'.format(max_node) | ||||
|   macro = 'OMP_NUM_THREADS=6 CUDA_VISIBLE_DEVICES=0' | ||||
|   with open(str(script_name), 'w') as cfile: | ||||
|     for start in range(0, total_arch, gaps): | ||||
|       xend = min(start+gaps, total_arch) | ||||
|       cfile.write('{:} python exps/NAS-Bench-201/statistics.py --mode cal --target_dir {:06d}-{:06d}-C16-N5\n'.format(macro, start, xend-1)) | ||||
|   print ('save the post-processing script into {:}'.format(script_name)) | ||||
|   """ | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|   # mode_choices = ['meta', 'new', 'cover'] + ['specific-{:}'.format(_) for _ in CellArchitectures.keys()] | ||||
|   parser = argparse.ArgumentParser(description='NATS-Bench (topology search space)', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|   parser.add_argument('--mode'   ,     type=str,   required=True,  help='The script mode.') | ||||
|   parser.add_argument('--save_dir',    type=str,   default='output/NATS-Bench-topology', help='Folder to save checkpoints and log.') | ||||
|   parser.add_argument('--max_node',    type=int,   default=4,      help='The maximum node in a cell (please do not change it).') | ||||
|   # use for train the model | ||||
|   parser.add_argument('--workers',     type=int,   default=8,      help='number of data loading workers (default: 2)') | ||||
|   parser.add_argument('--srange' ,     type=str, required=True,    help='The range of models to be evaluated') | ||||
|   parser.add_argument('--datasets',    type=str,   nargs='+',      help='The applied datasets.') | ||||
|   parser.add_argument('--xpaths',      type=str,   nargs='+',      help='The root path for this dataset.') | ||||
|   parser.add_argument('--splits',      type=int,   nargs='+',      help='The root path for this dataset.') | ||||
|   parser.add_argument('--hyper',       type=str, default='12', choices=['01', '12', '90'], help='The tag for hyper-parameters.') | ||||
|  | ||||
|   parser.add_argument('--seeds'  ,     type=int,   nargs='+',      help='The range of models to be evaluated') | ||||
|   parser.add_argument('--channel',     type=int,   default=16,     help='The number of channels.') | ||||
|   parser.add_argument('--num_cells',   type=int,   default=5,      help='The number of cells in one stage.') | ||||
|   args = parser.parse_args() | ||||
|  | ||||
|   assert args.mode in ['meta', 'new', 'cover'] or args.mode.startswith('specific-'), 'invalid mode : {:}'.format(args.mode) | ||||
|  | ||||
|   if args.mode == 'meta': | ||||
|     generate_meta_info(args.save_dir, args.max_node) | ||||
|   elif args.mode.startswith('specific'): | ||||
|     assert len(args.mode.split('-')) == 2, 'invalid mode : {:}'.format(args.mode) | ||||
|     model_str = args.mode.split('-')[1] | ||||
|     train_single_model(args.save_dir, args.workers, args.datasets, args.xpaths, args.splits, args.use_less>0, \ | ||||
|                          tuple(args.seeds), model_str, {'channel': args.channel, 'num_cells': args.num_cells}) | ||||
|   else: | ||||
|     meta_path = Path(args.save_dir) / 'meta-node-{:}.pth'.format(args.max_node) | ||||
|     assert meta_path.exists(), '{:} does not exist.'.format(meta_path) | ||||
|     meta_info = torch.load( meta_path ) | ||||
|     # check whether args is ok | ||||
|     assert len(args.srange) == 2 and args.srange[0] <= args.srange[1], 'invalid length of srange args: {:}'.format(args.srange) | ||||
|     assert len(args.seeds) > 0, 'invalid length of seeds args: {:}'.format(args.seeds) | ||||
|     assert len(args.datasets) == len(args.xpaths) == len(args.splits), 'invalid infos : {:} vs {:} vs {:}'.format(len(args.datasets), len(args.xpaths), len(args.splits)) | ||||
|     assert args.workers > 0, 'invalid number of workers : {:}'.format(args.workers) | ||||
|    | ||||
|     main(args.save_dir, args.workers, args.datasets, args.xpaths, args.splits, args.hyper, \ | ||||
|            tuple(args.srange), args.arch_index, tuple(args.seeds), \ | ||||
|            args.mode == 'cover', meta_info, \ | ||||
|            {'channel': args.channel, 'num_cells': args.num_cells}) | ||||
| @@ -1,8 +1,15 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08 # | ||||
| ##################################################### | ||||
| # python exps/NAS-Bench-201/xshape-collect.py | ||||
| ##################################################### | ||||
| ############################################################################## | ||||
| # NATS-Bench: Benchmarking NAS algorithms for Architecture Topology and Size # | ||||
| ############################################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.07                          # | ||||
| ############################################################################## | ||||
| # This file is used to re-orangize all checkpoints (created by main-sss.py)  # | ||||
| # into a single benchmark file. Besides, for each trial, we will merge the   # | ||||
| # information of all its trials into a single file.                          # | ||||
| #                                                                            # | ||||
| # Usage:                                                                     # | ||||
| # python exps/NATS-Bench/sss-collect.py                                      # | ||||
| ############################################################################## | ||||
| import os, re, sys, time, argparse, collections | ||||
| import numpy as np | ||||
| import torch | ||||
| @@ -14,10 +21,10 @@ lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
| from log_utils    import AverageMeter, time_string, convert_secs2time | ||||
| from config_utils import dict2config | ||||
| # NAS-Bench-201 related module or function | ||||
| from models       import CellStructure, get_cell_based_tiny_net | ||||
| from nas_201_api  import ArchResults, ResultsCount | ||||
| from procedures   import bench_pure_evaluate as pure_evaluate, get_nas_bench_loaders | ||||
| from utils        import get_md5_file | ||||
| 
 | ||||
| 
 | ||||
| def account_one_arch(arch_index: int, arch_str: Text, checkpoints: List[Text], datasets: List[Text]) -> ArchResults: | ||||
| @@ -163,41 +170,54 @@ def simplify(save_dir, save_name, nets, total): | ||||
|     for seed, xlist in seed2names.items(): | ||||
|       seeds.add(seed) | ||||
|       nums.append(len(xlist)) | ||||
|       print('  seed={:}, num={:}'.format(seed, len(xlist))) | ||||
|     # assert len(nets) == total == max(nums), 'there are some missed files : {:} vs {:}'.format(max(nums), total) | ||||
|       print('  [seed={:}] there are {:} checkpoints.'.format(seed, len(xlist))) | ||||
|     assert len(nets) == total == max(nums), 'there are some missed files : {:} vs {:}'.format(max(nums), total) | ||||
|   print('{:} start simplify the checkpoint.'.format(time_string())) | ||||
| 
 | ||||
|   datasets = ('cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120') | ||||
| 
 | ||||
|   simplify_save_dir, arch2infos, evaluated_indexes = save_dir / save_name, {}, set() | ||||
|   simplify_save_dir.mkdir(parents=True, exist_ok=True) | ||||
|   # Create the directory to save the processed data | ||||
|   # full_save_dir contains all benchmark files with trained weights. | ||||
|   # simplify_save_dir contains all benchmark files without trained weights. | ||||
|   full_save_dir = save_dir / (save_name + '-FULL') | ||||
|   simple_save_dir = save_dir / (save_name + '-SIMPLIFY') | ||||
|   full_save_dir.mkdir(parents=True, exist_ok=True) | ||||
|   simple_save_dir.mkdir(parents=True, exist_ok=True) | ||||
|   # all data in memory | ||||
|   arch2infos, evaluated_indexes = dict(), set() | ||||
|   end_time, arch_time = time.time(), AverageMeter() | ||||
|   # for index, arch_str in enumerate(nets): | ||||
| 
 | ||||
|   for index in tqdm(range(total)): | ||||
|     arch_str = nets[index] | ||||
|     hp2info = OrderedDict() | ||||
| 
 | ||||
|     full_save_path = full_save_dir / '{:06d}.npy'.format(index) | ||||
|     simple_save_path = simple_save_dir / '{:06d}.npy'.format(index) | ||||
| 
 | ||||
|     for hp in hps: | ||||
|       sub_save_dir = save_dir / 'raw-data-{:}'.format(hp) | ||||
|       ckps = [sub_save_dir / 'arch-{:06d}-seed-{:}.pth'.format(index, seed) for seed in seeds] | ||||
|       ckps = [x for x in ckps if x.exists()] | ||||
|       if len(ckps) == 0: raise ValueError('Invalid data : index={:}, hp={:}'.format(index, hp)) | ||||
|        | ||||
|       if len(ckps) == 0: | ||||
|         raise ValueError('Invalid data : index={:}, hp={:}'.format(index, hp)) | ||||
| 
 | ||||
|       arch_info = account_one_arch(index, arch_str, ckps, datasets) | ||||
|       hp2info[hp] = arch_info | ||||
|      | ||||
|     hp2info = correct_time_related_info(hp2info) | ||||
|     evaluated_indexes.add(index) | ||||
| 
 | ||||
|     hp2info['01'].clear_params()  # to save some spaces... | ||||
|     to_save_data = OrderedDict({'01': hp2info['01'].state_dict(), | ||||
|                                 '12': hp2info['12'].state_dict(), | ||||
|                                 '90': hp2info['90'].state_dict()}) | ||||
|     torch.save(to_save_data, simplify_save_dir / '{:}-FULL.pth'.format(index)) | ||||
|     np.save(str(full_save_path), to_save_data) | ||||
|      | ||||
|     for hp in hps: hp2info[hp].clear_params() | ||||
|     to_save_data = OrderedDict({'01': hp2info['01'].state_dict(), | ||||
|                                 '12': hp2info['12'].state_dict(), | ||||
|                                 '90': hp2info['90'].state_dict()}) | ||||
|     torch.save(to_save_data, simplify_save_dir / '{:}-SIMPLE.pth'.format(index)) | ||||
|     np.save(str(simple_save_path), to_save_data) | ||||
|     arch2infos[index] = to_save_data | ||||
|     # measure elapsed time | ||||
|     arch_time.update(time.time() - end_time) | ||||
| @@ -209,8 +229,9 @@ def simplify(save_dir, save_name, nets, total): | ||||
|                  'total_archs': total, | ||||
|                  'arch2infos' : arch2infos, | ||||
|                  'evaluated_indexes': evaluated_indexes} | ||||
|   save_file_name = save_dir / '{:}.pth'.format(save_name) | ||||
|   torch.save(final_infos, save_file_name) | ||||
|   save_file_name = save_dir / '{:}.npy'.format(save_name) | ||||
|   np.save(str(save_file_name), final_infos) | ||||
|   import pdb; pdb.set_trace() | ||||
|   print ('Save {:} / {:} architecture results into {:}.'.format(len(evaluated_indexes), total, save_file_name)) | ||||
| 
 | ||||
| 
 | ||||
| @@ -226,17 +247,17 @@ def traverse_net(candidates: List[int], N: int): | ||||
| 
 | ||||
| 
 | ||||
| if __name__ == '__main__': | ||||
| 
 | ||||
|   parser = argparse.ArgumentParser(description='NAS-BENCH-201', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|   parser.add_argument('--base_save_dir',  type=str, default='./output/NAS-BENCH-202',    help='The base-name of folder to save checkpoints and log.') | ||||
|   parser = argparse.ArgumentParser(description='NATS-Bench (size search space)', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|   parser.add_argument('--base_save_dir',  type=str, default='./output/NATS-Bench-size',    help='The base-name of folder to save checkpoints and log.') | ||||
|   parser.add_argument('--candidateC'   ,  type=int, nargs='+', default=[8, 16, 24, 32, 40, 48, 56, 64], help='.') | ||||
|   parser.add_argument('--num_layers'   ,  type=int, default=5,      help='The number of layers in a network.') | ||||
|   parser.add_argument('--check_N'      ,  type=int, default=32768,  help='For safety.') | ||||
|   parser.add_argument('--save_name'    ,  type=str, default='simplify',                  help='The save directory.') | ||||
|   parser.add_argument('--save_name'    ,  type=str, default='process',                  help='The save directory.') | ||||
|   args = parser.parse_args() | ||||
|    | ||||
|   nets = traverse_net(args.candidateC, args.num_layers) | ||||
|   if len(nets) != args.check_N: raise ValueError('Pre-num-check failed : {:} vs {:}'.format(len(nets), args.check_N)) | ||||
|   if len(nets) != args.check_N: | ||||
|     raise ValueError('Pre-num-check failed : {:} vs {:}'.format(len(nets), args.check_N)) | ||||
| 
 | ||||
|   save_dir  = Path(args.base_save_dir) | ||||
|   simplify(save_dir, args.save_name, nets, args.check_N) | ||||
| @@ -10,10 +10,15 @@ | ||||
| # History: | ||||
| # [2020.07.31] The first version, where most content reused nas_201_api/api_utils.py | ||||
| # | ||||
| import os, abc, copy, random, torch, numpy as np | ||||
| from pathlib import Path | ||||
| import abc, copy, random, numpy as np | ||||
| import importlib, warnings | ||||
| from typing import List, Text, Union, Dict, Optional | ||||
| from collections import OrderedDict, defaultdict | ||||
| USE_TORCH = importlib.find_loader('torch') is not None | ||||
| if USE_TORCH: | ||||
|   import torch | ||||
| else: | ||||
|   warnings.warn('Can not find PyTorch, and thus some features maybe invalid.') | ||||
|  | ||||
|  | ||||
| def remap_dataset_set_names(dataset, metric_on_set, verbose=False): | ||||
| @@ -545,6 +550,8 @@ class ArchResults(object): | ||||
|   def create_from_state_dict(state_dict_or_file): | ||||
|     x = ArchResults(-1, -1) | ||||
|     if isinstance(state_dict_or_file, str): # a file path | ||||
|       if not USE_TORCH: | ||||
|         raise ValueError('Since torch is not imported, this logic can not be used.') | ||||
|       state_dict = torch.load(state_dict_or_file, map_location='cpu') | ||||
|     elif isinstance(state_dict_or_file, dict): | ||||
|       state_dict = state_dict_or_file | ||||
|   | ||||
| @@ -3,3 +3,4 @@ from .gpu_manager      import GPUManager | ||||
| from .flop_benchmark   import get_model_infos, count_parameters_in_MB | ||||
| from .affine_utils     import normalize_points, denormalize_points | ||||
| from .affine_utils     import identity2affine, solve2theta, affine2image | ||||
| from .hash_utils       import get_md5_file | ||||
|   | ||||
							
								
								
									
										16
									
								
								lib/utils/hash_utils.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										16
									
								
								lib/utils/hash_utils.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,16 @@ | ||||
| import os, hashlib | ||||
|  | ||||
|  | ||||
| def get_md5_file(file_path, post_truncated=5): | ||||
|   md5_hash = hashlib.md5() | ||||
|   if os.path.exists(file_path): | ||||
|     xfile = open(file_path, "rb") | ||||
|     content = xfile.read() | ||||
|     md5_hash.update(content) | ||||
|     digest = md5_hash.hexdigest() | ||||
|   else: | ||||
|     raise ValueError('[get_md5_file] {:} does not exist'.format(file_path)) | ||||
|   if post_truncated is None: | ||||
|     return digest | ||||
|   else: | ||||
|     return digest[-post_truncated:] | ||||
		Reference in New Issue
	
	Block a user