Update LFNA

This commit is contained in:
D-X-Y 2021-05-22 17:36:09 +08:00
parent bc42ab3c08
commit ce787df02c
3 changed files with 94 additions and 11 deletions

View File

@ -93,6 +93,67 @@ def epoch_evaluate(loader, meta_model, base_model, criterion, device, logger):
return loss_meter
def pretrain(base_model, meta_model, criterion, xenv, args, logger):
optimizer = torch.optim.Adam(
meta_model.parameters(),
lr=args.lr,
weight_decay=args.weight_decay,
amsgrad=True,
)
meta_model.set_best_dir(logger.path(None) / "checkpoint-pretrain")
for iepoch in range(args.epochs):
total_meta_losses, total_match_losses = [], []
for ibatch in range(args.meta_batch):
rand_index = random.randint(0, meta_model.meta_length - xenv.seq_length - 1)
timestamps = meta_model.meta_timestamps[
rand_index : rand_index + xenv.seq_length
]
seq_timestamps, (seq_inputs, seq_targets) = xenv.seq_call(timestamps)
[seq_containers], time_embeds = meta_model(
torch.unsqueeze(timestamps, dim=0)
)
# performance loss
losses = []
seq_inputs, seq_targets = seq_inputs.to(args.device), seq_targets.to(
args.device
)
for container, inputs, targets in zip(
seq_containers, seq_inputs, seq_targets
):
predictions = base_model.forward_with_container(inputs, container)
loss = criterion(predictions, targets)
losses.append(loss)
meta_loss = torch.stack(losses).mean()
match_loss = criterion(
torch.squeeze(time_embeds, dim=0),
meta_model.super_meta_embed[rand_index : rand_index + xenv.seq_length],
)
# batch_loss = meta_loss + match_loss * 0.1
# total_losses.append(batch_loss)
total_meta_losses.append(meta_loss)
total_match_losses.append(match_loss)
final_meta_loss = torch.stack(total_meta_losses).mean()
final_match_loss = torch.stack(total_match_losses).mean()
total_loss = final_meta_loss + final_match_loss
total_loss.backward()
optimizer.step()
# success
success, best_score = meta_model.save_best(-total_loss.item())
logger.log(
"{:} [{:04d}/{:}] loss : {:.5f} = {:.5f} + {:.5f} (match)".format(
time_string(),
iepoch,
args.epochs,
total_loss.item(),
final_meta_loss.item(),
final_match_loss.item(),
)
+ ", batch={:}".format(len(total_meta_losses))
)
def main(args):
logger, env_info, model_kwargs = lfna_setup(args)
train_env = get_synthetic_env(mode="train", version=args.env_version)
@ -148,6 +209,8 @@ def main(args):
logger.log("The scheduler is\n{:}".format(lr_scheduler))
logger.log("Per epoch iterations = {:}".format(len(train_env_loader)))
pretrain(base_model, meta_model, criterion, train_env, args, logger)
if logger.path("model").exists():
ckp_data = torch.load(logger.path("model"))
base_model.load_state_dict(ckp_data["base_model"])
@ -345,7 +408,7 @@ if __name__ == "__main__":
parser.add_argument(
"--lr",
type=float,
default=0.005,
default=0.002,
help="The initial learning rate for the optimizer (default is Adam)",
)
parser.add_argument(

View File

@ -63,7 +63,7 @@ class LFNA_Meta(super_core.SuperModule):
for ilayer in range(mha_depth):
layers.append(
super_core.SuperTransformerEncoderLayer(
time_embedding,
time_embedding * 2,
4,
True,
4,
@ -72,7 +72,7 @@ class LFNA_Meta(super_core.SuperModule):
order=super_core.LayerOrder.PostNorm,
)
)
layers.append(super_core.SuperLinear(time_embedding, time_embedding))
layers.append(super_core.SuperLinear(time_embedding * 2, time_embedding))
self.meta_corrector = super_core.SuperSequential(*layers)
model_kwargs = dict(
@ -95,10 +95,11 @@ class LFNA_Meta(super_core.SuperModule):
@property
def meta_timestamps(self):
meta_timestamps = [self._meta_timestamps]
for key in ("fixed", "learnt"):
if self._append_meta_timestamps[key] is not None:
meta_timestamps.append(self._append_meta_timestamps[key])
with torch.no_grad():
meta_timestamps = [self._meta_timestamps]
for key in ("fixed", "learnt"):
if self._append_meta_timestamps[key] is not None:
meta_timestamps.append(self._append_meta_timestamps[key])
return torch.cat(meta_timestamps)
@property
@ -125,6 +126,10 @@ class LFNA_Meta(super_core.SuperModule):
self._append_meta_timestamps["learnt"] = timestamp
self._append_meta_embed["learnt"] = meta_embed
@property
def meta_length(self):
return self.meta_timestamps.numel()
def append_fixed(self, timestamp, meta_embed):
with torch.no_grad():
device = self._super_meta_embed.device
@ -152,15 +157,18 @@ class LFNA_Meta(super_core.SuperModule):
timestamp_embeds = self._trans_att(
timestamp_q_embed, timestamp_k_embed, timestamp_v_embed
)
corrected_embeds = self.meta_corrector(timestamp_embeds)
# relative_timestamps = timestamps - timestamps[:, :1]
# relative_pos_embeds = self._tscalar_embed(relative_timestamps)
init_timestamp_embeds = torch.cat((timestamp_q_embed, timestamp_embeds), dim=-1)
corrected_embeds = self.meta_corrector(init_timestamp_embeds)
return corrected_embeds
def forward_raw(self, timestamps):
batch, seq = timestamps.shape
meta_embed = self._obtain_time_embed(timestamps)
time_embed = self._obtain_time_embed(timestamps)
# create joint embed
num_layer, _ = self._super_layer_embed.shape
meta_embed = meta_embed.view(batch, seq, 1, -1).expand(-1, -1, num_layer, -1)
meta_embed = time_embed.view(batch, seq, 1, -1).expand(-1, -1, num_layer, -1)
layer_embed = self._super_layer_embed.view(1, 1, num_layer, -1).expand(
batch, seq, -1, -1
)
@ -173,7 +181,7 @@ class LFNA_Meta(super_core.SuperModule):
weights = torch.split(weights.squeeze(0), 1)
seq_containers.append(self._shape_container.translate(weights))
batch_containers.append(seq_containers)
return batch_containers
return batch_containers, time_embed
def forward_candidate(self, input):
raise NotImplementedError

View File

@ -68,6 +68,10 @@ class SyntheticDEnv(data.Dataset):
self._oracle_map = None
self._seq_length = None
@property
def seq_length(self):
return self._seq_length
@property
def min_timestamp(self):
return self._timestamp_generator.min_timestamp
@ -125,6 +129,14 @@ class SyntheticDEnv(data.Dataset):
timestamp + i * self.timestamp_interval + noise
for i in range(self._seq_length)
]
# xdata = [self.__call__(timestamp) for timestamp in timestamps]
# return zip_sequence(xdata)
return self.seq_call(timestamps)
def seq_call(self, timestamps):
with torch.no_grad():
if isinstance(timestamps, torch.Tensor):
timestamps = timestamps.cpu().tolist()
xdata = [self.__call__(timestamp) for timestamp in timestamps]
return zip_sequence(xdata)