Update LFNA
This commit is contained in:
parent
bc42ab3c08
commit
ce787df02c
@ -93,6 +93,67 @@ def epoch_evaluate(loader, meta_model, base_model, criterion, device, logger):
|
|||||||
return loss_meter
|
return loss_meter
|
||||||
|
|
||||||
|
|
||||||
|
def pretrain(base_model, meta_model, criterion, xenv, args, logger):
|
||||||
|
optimizer = torch.optim.Adam(
|
||||||
|
meta_model.parameters(),
|
||||||
|
lr=args.lr,
|
||||||
|
weight_decay=args.weight_decay,
|
||||||
|
amsgrad=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
meta_model.set_best_dir(logger.path(None) / "checkpoint-pretrain")
|
||||||
|
for iepoch in range(args.epochs):
|
||||||
|
total_meta_losses, total_match_losses = [], []
|
||||||
|
for ibatch in range(args.meta_batch):
|
||||||
|
rand_index = random.randint(0, meta_model.meta_length - xenv.seq_length - 1)
|
||||||
|
timestamps = meta_model.meta_timestamps[
|
||||||
|
rand_index : rand_index + xenv.seq_length
|
||||||
|
]
|
||||||
|
|
||||||
|
seq_timestamps, (seq_inputs, seq_targets) = xenv.seq_call(timestamps)
|
||||||
|
[seq_containers], time_embeds = meta_model(
|
||||||
|
torch.unsqueeze(timestamps, dim=0)
|
||||||
|
)
|
||||||
|
# performance loss
|
||||||
|
losses = []
|
||||||
|
seq_inputs, seq_targets = seq_inputs.to(args.device), seq_targets.to(
|
||||||
|
args.device
|
||||||
|
)
|
||||||
|
for container, inputs, targets in zip(
|
||||||
|
seq_containers, seq_inputs, seq_targets
|
||||||
|
):
|
||||||
|
predictions = base_model.forward_with_container(inputs, container)
|
||||||
|
loss = criterion(predictions, targets)
|
||||||
|
losses.append(loss)
|
||||||
|
meta_loss = torch.stack(losses).mean()
|
||||||
|
match_loss = criterion(
|
||||||
|
torch.squeeze(time_embeds, dim=0),
|
||||||
|
meta_model.super_meta_embed[rand_index : rand_index + xenv.seq_length],
|
||||||
|
)
|
||||||
|
# batch_loss = meta_loss + match_loss * 0.1
|
||||||
|
# total_losses.append(batch_loss)
|
||||||
|
total_meta_losses.append(meta_loss)
|
||||||
|
total_match_losses.append(match_loss)
|
||||||
|
final_meta_loss = torch.stack(total_meta_losses).mean()
|
||||||
|
final_match_loss = torch.stack(total_match_losses).mean()
|
||||||
|
total_loss = final_meta_loss + final_match_loss
|
||||||
|
total_loss.backward()
|
||||||
|
optimizer.step()
|
||||||
|
# success
|
||||||
|
success, best_score = meta_model.save_best(-total_loss.item())
|
||||||
|
logger.log(
|
||||||
|
"{:} [{:04d}/{:}] loss : {:.5f} = {:.5f} + {:.5f} (match)".format(
|
||||||
|
time_string(),
|
||||||
|
iepoch,
|
||||||
|
args.epochs,
|
||||||
|
total_loss.item(),
|
||||||
|
final_meta_loss.item(),
|
||||||
|
final_match_loss.item(),
|
||||||
|
)
|
||||||
|
+ ", batch={:}".format(len(total_meta_losses))
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
def main(args):
|
def main(args):
|
||||||
logger, env_info, model_kwargs = lfna_setup(args)
|
logger, env_info, model_kwargs = lfna_setup(args)
|
||||||
train_env = get_synthetic_env(mode="train", version=args.env_version)
|
train_env = get_synthetic_env(mode="train", version=args.env_version)
|
||||||
@ -148,6 +209,8 @@ def main(args):
|
|||||||
logger.log("The scheduler is\n{:}".format(lr_scheduler))
|
logger.log("The scheduler is\n{:}".format(lr_scheduler))
|
||||||
logger.log("Per epoch iterations = {:}".format(len(train_env_loader)))
|
logger.log("Per epoch iterations = {:}".format(len(train_env_loader)))
|
||||||
|
|
||||||
|
pretrain(base_model, meta_model, criterion, train_env, args, logger)
|
||||||
|
|
||||||
if logger.path("model").exists():
|
if logger.path("model").exists():
|
||||||
ckp_data = torch.load(logger.path("model"))
|
ckp_data = torch.load(logger.path("model"))
|
||||||
base_model.load_state_dict(ckp_data["base_model"])
|
base_model.load_state_dict(ckp_data["base_model"])
|
||||||
@ -345,7 +408,7 @@ if __name__ == "__main__":
|
|||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--lr",
|
"--lr",
|
||||||
type=float,
|
type=float,
|
||||||
default=0.005,
|
default=0.002,
|
||||||
help="The initial learning rate for the optimizer (default is Adam)",
|
help="The initial learning rate for the optimizer (default is Adam)",
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
|
@ -63,7 +63,7 @@ class LFNA_Meta(super_core.SuperModule):
|
|||||||
for ilayer in range(mha_depth):
|
for ilayer in range(mha_depth):
|
||||||
layers.append(
|
layers.append(
|
||||||
super_core.SuperTransformerEncoderLayer(
|
super_core.SuperTransformerEncoderLayer(
|
||||||
time_embedding,
|
time_embedding * 2,
|
||||||
4,
|
4,
|
||||||
True,
|
True,
|
||||||
4,
|
4,
|
||||||
@ -72,7 +72,7 @@ class LFNA_Meta(super_core.SuperModule):
|
|||||||
order=super_core.LayerOrder.PostNorm,
|
order=super_core.LayerOrder.PostNorm,
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
layers.append(super_core.SuperLinear(time_embedding, time_embedding))
|
layers.append(super_core.SuperLinear(time_embedding * 2, time_embedding))
|
||||||
self.meta_corrector = super_core.SuperSequential(*layers)
|
self.meta_corrector = super_core.SuperSequential(*layers)
|
||||||
|
|
||||||
model_kwargs = dict(
|
model_kwargs = dict(
|
||||||
@ -95,10 +95,11 @@ class LFNA_Meta(super_core.SuperModule):
|
|||||||
|
|
||||||
@property
|
@property
|
||||||
def meta_timestamps(self):
|
def meta_timestamps(self):
|
||||||
meta_timestamps = [self._meta_timestamps]
|
with torch.no_grad():
|
||||||
for key in ("fixed", "learnt"):
|
meta_timestamps = [self._meta_timestamps]
|
||||||
if self._append_meta_timestamps[key] is not None:
|
for key in ("fixed", "learnt"):
|
||||||
meta_timestamps.append(self._append_meta_timestamps[key])
|
if self._append_meta_timestamps[key] is not None:
|
||||||
|
meta_timestamps.append(self._append_meta_timestamps[key])
|
||||||
return torch.cat(meta_timestamps)
|
return torch.cat(meta_timestamps)
|
||||||
|
|
||||||
@property
|
@property
|
||||||
@ -125,6 +126,10 @@ class LFNA_Meta(super_core.SuperModule):
|
|||||||
self._append_meta_timestamps["learnt"] = timestamp
|
self._append_meta_timestamps["learnt"] = timestamp
|
||||||
self._append_meta_embed["learnt"] = meta_embed
|
self._append_meta_embed["learnt"] = meta_embed
|
||||||
|
|
||||||
|
@property
|
||||||
|
def meta_length(self):
|
||||||
|
return self.meta_timestamps.numel()
|
||||||
|
|
||||||
def append_fixed(self, timestamp, meta_embed):
|
def append_fixed(self, timestamp, meta_embed):
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
device = self._super_meta_embed.device
|
device = self._super_meta_embed.device
|
||||||
@ -152,15 +157,18 @@ class LFNA_Meta(super_core.SuperModule):
|
|||||||
timestamp_embeds = self._trans_att(
|
timestamp_embeds = self._trans_att(
|
||||||
timestamp_q_embed, timestamp_k_embed, timestamp_v_embed
|
timestamp_q_embed, timestamp_k_embed, timestamp_v_embed
|
||||||
)
|
)
|
||||||
corrected_embeds = self.meta_corrector(timestamp_embeds)
|
# relative_timestamps = timestamps - timestamps[:, :1]
|
||||||
|
# relative_pos_embeds = self._tscalar_embed(relative_timestamps)
|
||||||
|
init_timestamp_embeds = torch.cat((timestamp_q_embed, timestamp_embeds), dim=-1)
|
||||||
|
corrected_embeds = self.meta_corrector(init_timestamp_embeds)
|
||||||
return corrected_embeds
|
return corrected_embeds
|
||||||
|
|
||||||
def forward_raw(self, timestamps):
|
def forward_raw(self, timestamps):
|
||||||
batch, seq = timestamps.shape
|
batch, seq = timestamps.shape
|
||||||
meta_embed = self._obtain_time_embed(timestamps)
|
time_embed = self._obtain_time_embed(timestamps)
|
||||||
# create joint embed
|
# create joint embed
|
||||||
num_layer, _ = self._super_layer_embed.shape
|
num_layer, _ = self._super_layer_embed.shape
|
||||||
meta_embed = meta_embed.view(batch, seq, 1, -1).expand(-1, -1, num_layer, -1)
|
meta_embed = time_embed.view(batch, seq, 1, -1).expand(-1, -1, num_layer, -1)
|
||||||
layer_embed = self._super_layer_embed.view(1, 1, num_layer, -1).expand(
|
layer_embed = self._super_layer_embed.view(1, 1, num_layer, -1).expand(
|
||||||
batch, seq, -1, -1
|
batch, seq, -1, -1
|
||||||
)
|
)
|
||||||
@ -173,7 +181,7 @@ class LFNA_Meta(super_core.SuperModule):
|
|||||||
weights = torch.split(weights.squeeze(0), 1)
|
weights = torch.split(weights.squeeze(0), 1)
|
||||||
seq_containers.append(self._shape_container.translate(weights))
|
seq_containers.append(self._shape_container.translate(weights))
|
||||||
batch_containers.append(seq_containers)
|
batch_containers.append(seq_containers)
|
||||||
return batch_containers
|
return batch_containers, time_embed
|
||||||
|
|
||||||
def forward_candidate(self, input):
|
def forward_candidate(self, input):
|
||||||
raise NotImplementedError
|
raise NotImplementedError
|
||||||
|
@ -68,6 +68,10 @@ class SyntheticDEnv(data.Dataset):
|
|||||||
self._oracle_map = None
|
self._oracle_map = None
|
||||||
self._seq_length = None
|
self._seq_length = None
|
||||||
|
|
||||||
|
@property
|
||||||
|
def seq_length(self):
|
||||||
|
return self._seq_length
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def min_timestamp(self):
|
def min_timestamp(self):
|
||||||
return self._timestamp_generator.min_timestamp
|
return self._timestamp_generator.min_timestamp
|
||||||
@ -125,6 +129,14 @@ class SyntheticDEnv(data.Dataset):
|
|||||||
timestamp + i * self.timestamp_interval + noise
|
timestamp + i * self.timestamp_interval + noise
|
||||||
for i in range(self._seq_length)
|
for i in range(self._seq_length)
|
||||||
]
|
]
|
||||||
|
# xdata = [self.__call__(timestamp) for timestamp in timestamps]
|
||||||
|
# return zip_sequence(xdata)
|
||||||
|
return self.seq_call(timestamps)
|
||||||
|
|
||||||
|
def seq_call(self, timestamps):
|
||||||
|
with torch.no_grad():
|
||||||
|
if isinstance(timestamps, torch.Tensor):
|
||||||
|
timestamps = timestamps.cpu().tolist()
|
||||||
xdata = [self.__call__(timestamp) for timestamp in timestamps]
|
xdata = [self.__call__(timestamp) for timestamp in timestamps]
|
||||||
return zip_sequence(xdata)
|
return zip_sequence(xdata)
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user