Add save/load_best for xlayers
This commit is contained in:
		| @@ -36,7 +36,7 @@ def main(args): | |||||||
|     model = get_model(**model_kwargs) |     model = get_model(**model_kwargs) | ||||||
|     criterion = torch.nn.MSELoss() |     criterion = torch.nn.MSELoss() | ||||||
|  |  | ||||||
|     logger.log("There are {:} weights.".format(model.get_w_container().numel())) |     logger.log("There are {:} weights.".format(model.numel())) | ||||||
|  |  | ||||||
|     shape_container = model.get_w_container().to_shape_container() |     shape_container = model.get_w_container().to_shape_container() | ||||||
|     hypernet = HyperNet(shape_container, args.hidden_dim, args.task_dim) |     hypernet = HyperNet(shape_container, args.hidden_dim, args.task_dim) | ||||||
|   | |||||||
| @@ -1,8 +1,8 @@ | |||||||
| ##################################################### | ##################################################### | ||||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # | ||||||
| ##################################################### | ##################################################### | ||||||
| # python exps/LFNA/lfna-test-hpnet.py --env_version v1 --hidden_dim 16 --layer_dim 32 --epochs 500000 --init_lr 0.01 | # python exps/LFNA/lfna-test-hpnet.py --env_version v1 --hidden_dim 16 --layer_dim 16 --epochs 20000 --init_lr 0.01 | ||||||
| # python exps/LFNA/lfna-test-hpnet.py --env_version v1 --hidden_dim 16 --layer_dim 32 --epochs 500000 --init_lr 0.01 --device cuda | # python exps/LFNA/lfna-test-hpnet.py --env_version v1 --hidden_dim 16 --layer_dim 16 --epochs 10000 --init_lr 0.01 --device cuda | ||||||
| ##################################################### | ##################################################### | ||||||
| import sys, time, copy, torch, random, argparse | import sys, time, copy, torch, random, argparse | ||||||
| from tqdm import tqdm | from tqdm import tqdm | ||||||
| @@ -39,7 +39,8 @@ def main(args): | |||||||
|     criterion = torch.nn.MSELoss() |     criterion = torch.nn.MSELoss() | ||||||
|  |  | ||||||
|     shape_container = model.get_w_container().to_shape_container() |     shape_container = model.get_w_container().to_shape_container() | ||||||
|     hypernet = HyperNet(shape_container, args.layer_dim, args.task_dim) |     total_bar = 100 | ||||||
|  |     hypernet = HyperNet(shape_container, args.layer_dim, args.task_dim, total_bar) | ||||||
|     hypernet = hypernet.to(args.device) |     hypernet = hypernet.to(args.device) | ||||||
|  |  | ||||||
|     logger.log( |     logger.log( | ||||||
| @@ -52,14 +53,6 @@ def main(args): | |||||||
|             time_string(), hypernet.numel() |             time_string(), hypernet.numel() | ||||||
|         ) |         ) | ||||||
|     ) |     ) | ||||||
|     # task_embed = torch.nn.Parameter(torch.Tensor(env_info["total"], args.task_dim)) |  | ||||||
|     total_bar = 100 |  | ||||||
|     task_embeds = [] |  | ||||||
|     for i in range(total_bar): |  | ||||||
|         tensor = torch.Tensor(1, args.task_dim).to(args.device) |  | ||||||
|         task_embeds.append(torch.nn.Parameter(tensor)) |  | ||||||
|     for task_embed in task_embeds: |  | ||||||
|         trunc_normal_(task_embed, std=0.02) |  | ||||||
|     for i in range(total_bar): |     for i in range(total_bar): | ||||||
|         env_info["{:}-x".format(i)] = env_info["{:}-x".format(i)].to(args.device) |         env_info["{:}-x".format(i)] = env_info["{:}-x".format(i)].to(args.device) | ||||||
|         env_info["{:}-y".format(i)] = env_info["{:}-y".format(i)].to(args.device) |         env_info["{:}-y".format(i)] = env_info["{:}-y".format(i)].to(args.device) | ||||||
| @@ -67,9 +60,9 @@ def main(args): | |||||||
|     model.train() |     model.train() | ||||||
|     hypernet.train() |     hypernet.train() | ||||||
|  |  | ||||||
|     parameters = list(hypernet.parameters()) + task_embeds |     optimizer = torch.optim.Adam( | ||||||
|     # optimizer = torch.optim.Adam(parameters, lr=args.init_lr, amsgrad=True) |         hypernet.parameters(), lr=args.init_lr, weight_decay=1e-5, amsgrad=True | ||||||
|     optimizer = torch.optim.Adam(parameters, lr=args.init_lr, weight_decay=1e-5) |     ) | ||||||
|     lr_scheduler = torch.optim.lr_scheduler.MultiStepLR( |     lr_scheduler = torch.optim.lr_scheduler.MultiStepLR( | ||||||
|         optimizer, |         optimizer, | ||||||
|         milestones=[ |         milestones=[ | ||||||
| @@ -97,10 +90,10 @@ def main(args): | |||||||
|         # for ibatch in range(args.meta_batch): |         # for ibatch in range(args.meta_batch): | ||||||
|         for cur_time in range(total_bar): |         for cur_time in range(total_bar): | ||||||
|             # cur_time = random.randint(0, total_bar) |             # cur_time = random.randint(0, total_bar) | ||||||
|             cur_task_embed = task_embeds[cur_time] |             # cur_task_embed = task_embeds[cur_time] | ||||||
|             cur_container = hypernet(cur_task_embed) |             cur_container = hypernet(cur_time) | ||||||
|             cur_x = env_info["{:}-x".format(cur_time)].to(args.device) |             cur_x = env_info["{:}-x".format(cur_time)] | ||||||
|             cur_y = env_info["{:}-y".format(cur_time)].to(args.device) |             cur_y = env_info["{:}-y".format(cur_time)] | ||||||
|             cur_dataset = TimeData(cur_time, cur_x, cur_y) |             cur_dataset = TimeData(cur_time, cur_x, cur_y) | ||||||
|  |  | ||||||
|             preds = model.forward_with_container(cur_dataset.x, cur_container) |             preds = model.forward_with_container(cur_dataset.x, cur_container) | ||||||
| @@ -126,10 +119,14 @@ def main(args): | |||||||
|                 ) |                 ) | ||||||
|             ) |             ) | ||||||
|  |  | ||||||
|  |             success, best_score = hypernet.save_best(-loss_meter.avg) | ||||||
|  |             if success: | ||||||
|  |                 logger.log( | ||||||
|  |                     "Achieve the best with best_score = {:.3f}".format(best_score) | ||||||
|  |                 ) | ||||||
|             save_checkpoint( |             save_checkpoint( | ||||||
|                 { |                 { | ||||||
|                     "hypernet": hypernet.state_dict(), |                     "hypernet": hypernet.state_dict(), | ||||||
|                     "task_embed": task_embed, |  | ||||||
|                     "lr_scheduler": lr_scheduler.state_dict(), |                     "lr_scheduler": lr_scheduler.state_dict(), | ||||||
|                     "iepoch": iepoch, |                     "iepoch": iepoch, | ||||||
|                 }, |                 }, | ||||||
| @@ -142,13 +139,15 @@ def main(args): | |||||||
|  |  | ||||||
|     print(model) |     print(model) | ||||||
|     print(hypernet) |     print(hypernet) | ||||||
|  |     hypernet.load_best() | ||||||
|  |  | ||||||
|     w_container_per_epoch = dict() |     w_container_per_epoch = dict() | ||||||
|     for idx in range(0, total_bar): |     for idx in range(0, total_bar): | ||||||
|         future_time = env_info["{:}-timestamp".format(idx)] |         future_time = env_info["{:}-timestamp".format(idx)] | ||||||
|         future_x = env_info["{:}-x".format(idx)] |         future_x = env_info["{:}-x".format(idx)] | ||||||
|         future_y = env_info["{:}-y".format(idx)] |         future_y = env_info["{:}-y".format(idx)] | ||||||
|         future_container = hypernet(task_embeds[idx]) |         # future_container = hypernet(task_embeds[idx]) | ||||||
|  |         future_container = hypernet(idx) | ||||||
|         w_container_per_epoch[idx] = future_container.no_grad_clone() |         w_container_per_epoch[idx] = future_container.no_grad_clone() | ||||||
|         with torch.no_grad(): |         with torch.no_grad(): | ||||||
|             future_y_hat = model.forward_with_container( |             future_y_hat = model.forward_with_container( | ||||||
|   | |||||||
| @@ -15,7 +15,12 @@ class HyperNet(super_core.SuperModule): | |||||||
|     """The hyper-network.""" |     """The hyper-network.""" | ||||||
|  |  | ||||||
|     def __init__( |     def __init__( | ||||||
|         self, shape_container, layer_embeding, task_embedding, return_container=True |         self, | ||||||
|  |         shape_container, | ||||||
|  |         layer_embeding, | ||||||
|  |         task_embedding, | ||||||
|  |         num_tasks, | ||||||
|  |         return_container=True, | ||||||
|     ): |     ): | ||||||
|         super(HyperNet, self).__init__() |         super(HyperNet, self).__init__() | ||||||
|         self._shape_container = shape_container |         self._shape_container = shape_container | ||||||
| @@ -28,36 +33,33 @@ class HyperNet(super_core.SuperModule): | |||||||
|             "_super_layer_embed", |             "_super_layer_embed", | ||||||
|             torch.nn.Parameter(torch.Tensor(self._num_layers, layer_embeding)), |             torch.nn.Parameter(torch.Tensor(self._num_layers, layer_embeding)), | ||||||
|         ) |         ) | ||||||
|  |         self.register_parameter( | ||||||
|  |             "_super_task_embed", | ||||||
|  |             torch.nn.Parameter(torch.Tensor(num_tasks, task_embedding)), | ||||||
|  |         ) | ||||||
|         trunc_normal_(self._super_layer_embed, std=0.02) |         trunc_normal_(self._super_layer_embed, std=0.02) | ||||||
|  |         trunc_normal_(self._super_task_embed, std=0.02) | ||||||
|  |  | ||||||
|         model_kwargs = dict( |         model_kwargs = dict( | ||||||
|             config=dict(model_type="dual_norm_mlp"), |             config=dict(model_type="dual_norm_mlp"), | ||||||
|             input_dim=layer_embeding + task_embedding, |             input_dim=layer_embeding + task_embedding, | ||||||
|             output_dim=max(self._numel_per_layer), |             output_dim=max(self._numel_per_layer), | ||||||
|             hidden_dims=[layer_embeding * 2] * 3, |             hidden_dims=[(layer_embeding + task_embedding) * 2] * 3, | ||||||
|             act_cls="gelu", |             act_cls="gelu", | ||||||
|             norm_cls="layer_norm_1d", |             norm_cls="layer_norm_1d", | ||||||
|             dropout=0.1, |             dropout=0.2, | ||||||
|         ) |         ) | ||||||
|         self._generator = get_model(**model_kwargs) |         self._generator = get_model(**model_kwargs) | ||||||
|         """ |  | ||||||
|         model_kwargs = dict( |  | ||||||
|             input_dim=layer_embeding + task_embedding, |  | ||||||
|             output_dim=max(self._numel_per_layer), |  | ||||||
|             hidden_dim=layer_embeding * 4, |  | ||||||
|             act_cls="sigmoid", |  | ||||||
|             norm_cls="identity", |  | ||||||
|         ) |  | ||||||
|         self._generator = get_model(dict(model_type="simple_mlp"), **model_kwargs) |  | ||||||
|         """ |  | ||||||
|         self._return_container = return_container |         self._return_container = return_container | ||||||
|         print("generator: {:}".format(self._generator)) |         print("generator: {:}".format(self._generator)) | ||||||
|  |  | ||||||
|     def forward_raw(self, task_embed): |     def forward_raw(self, task_embed_id): | ||||||
|         # task_embed = F.normalize(task_embed, dim=-1, p=2) |  | ||||||
|         # layer_embed = F.normalize(self._super_layer_embed, dim=-1, p=2) |  | ||||||
|         layer_embed = self._super_layer_embed |         layer_embed = self._super_layer_embed | ||||||
|         task_embed = task_embed.view(1, -1).expand(self._num_layers, -1) |         task_embed = ( | ||||||
|  |             self._super_task_embed[task_embed_id] | ||||||
|  |             .view(1, -1) | ||||||
|  |             .expand(self._num_layers, -1) | ||||||
|  |         ) | ||||||
|  |  | ||||||
|         joint_embed = torch.cat((task_embed, layer_embed), dim=-1) |         joint_embed = torch.cat((task_embed, layer_embed), dim=-1) | ||||||
|         weights = self._generator(joint_embed) |         weights = self._generator(joint_embed) | ||||||
|   | |||||||
| @@ -2,7 +2,9 @@ | |||||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 # | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 # | ||||||
| ##################################################### | ##################################################### | ||||||
|  |  | ||||||
|  | import os | ||||||
| import abc | import abc | ||||||
|  | import tempfile | ||||||
| import warnings | import warnings | ||||||
| from typing import Optional, Union, Callable | from typing import Optional, Union, Callable | ||||||
| import torch | import torch | ||||||
| @@ -16,6 +18,9 @@ from .super_utils import LayerOrder, SuperRunMode | |||||||
| from .super_utils import TensorContainer | from .super_utils import TensorContainer | ||||||
| from .super_utils import ShapeContainer | from .super_utils import ShapeContainer | ||||||
|  |  | ||||||
|  | BEST_DIR_KEY = "best_model_dir" | ||||||
|  | BEST_SCORE_KEY = "best_model_score" | ||||||
|  |  | ||||||
|  |  | ||||||
| class SuperModule(abc.ABC, nn.Module): | class SuperModule(abc.ABC, nn.Module): | ||||||
|     """This class equips the nn.Module class with the ability to apply AutoDL.""" |     """This class equips the nn.Module class with the ability to apply AutoDL.""" | ||||||
| @@ -25,6 +30,7 @@ class SuperModule(abc.ABC, nn.Module): | |||||||
|         self._super_run_type = SuperRunMode.Default |         self._super_run_type = SuperRunMode.Default | ||||||
|         self._abstract_child = None |         self._abstract_child = None | ||||||
|         self._verbose = False |         self._verbose = False | ||||||
|  |         self._meta_info = {} | ||||||
|  |  | ||||||
|     def set_super_run_type(self, super_run_type): |     def set_super_run_type(self, super_run_type): | ||||||
|         def _reset_super_run(m): |         def _reset_super_run(m): | ||||||
| @@ -84,6 +90,34 @@ class SuperModule(abc.ABC, nn.Module): | |||||||
|                 total += buf.numel() |                 total += buf.numel() | ||||||
|         return total |         return total | ||||||
|  |  | ||||||
|  |     def save_best(self, score): | ||||||
|  |         if BEST_DIR_KEY not in self._meta_info: | ||||||
|  |             tempdir = tempfile.mkdtemp("-xlayers") | ||||||
|  |             self._meta_info[BEST_DIR_KEY] = tempdir | ||||||
|  |         if BEST_SCORE_KEY not in self._meta_info: | ||||||
|  |             self._meta_info[BEST_SCORE_KEY] = None | ||||||
|  |         best_score = self._meta_info[BEST_SCORE_KEY] | ||||||
|  |         if best_score is None or best_score < score: | ||||||
|  |             best_save_path = os.path.join( | ||||||
|  |                 self._meta_info[BEST_DIR_KEY], | ||||||
|  |                 "best-{:}.pth".format(self.__class__.__name__), | ||||||
|  |             ) | ||||||
|  |             self._meta_info[BEST_SCORE_KEY] = score | ||||||
|  |             torch.save(self.state_dict(), best_save_path) | ||||||
|  |             return True, self._meta_info[BEST_SCORE_KEY] | ||||||
|  |         else: | ||||||
|  |             return False, self._meta_info[BEST_SCORE_KEY] | ||||||
|  |  | ||||||
|  |     def load_best(self): | ||||||
|  |         if BEST_DIR_KEY not in self._meta_info or BEST_SCORE_KEY not in self._meta_info: | ||||||
|  |             raise ValueError("Please call save_best at first") | ||||||
|  |         best_save_path = os.path.join( | ||||||
|  |             self._meta_info[BEST_DIR_KEY], | ||||||
|  |             "best-{:}.pth".format(self.__class__.__name__), | ||||||
|  |         ) | ||||||
|  |         state_dict = torch.load(best_save_path) | ||||||
|  |         self.load_state_dict(state_dict) | ||||||
|  |  | ||||||
|     @property |     @property | ||||||
|     def abstract_search_space(self): |     def abstract_search_space(self): | ||||||
|         raise NotImplementedError |         raise NotImplementedError | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user