Add save/load_best for xlayers
This commit is contained in:
		| @@ -36,7 +36,7 @@ def main(args): | ||||
|     model = get_model(**model_kwargs) | ||||
|     criterion = torch.nn.MSELoss() | ||||
|  | ||||
|     logger.log("There are {:} weights.".format(model.get_w_container().numel())) | ||||
|     logger.log("There are {:} weights.".format(model.numel())) | ||||
|  | ||||
|     shape_container = model.get_w_container().to_shape_container() | ||||
|     hypernet = HyperNet(shape_container, args.hidden_dim, args.task_dim) | ||||
|   | ||||
| @@ -1,8 +1,8 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # | ||||
| ##################################################### | ||||
| # python exps/LFNA/lfna-test-hpnet.py --env_version v1 --hidden_dim 16 --layer_dim 32 --epochs 500000 --init_lr 0.01 | ||||
| # python exps/LFNA/lfna-test-hpnet.py --env_version v1 --hidden_dim 16 --layer_dim 32 --epochs 500000 --init_lr 0.01 --device cuda | ||||
| # python exps/LFNA/lfna-test-hpnet.py --env_version v1 --hidden_dim 16 --layer_dim 16 --epochs 20000 --init_lr 0.01 | ||||
| # python exps/LFNA/lfna-test-hpnet.py --env_version v1 --hidden_dim 16 --layer_dim 16 --epochs 10000 --init_lr 0.01 --device cuda | ||||
| ##################################################### | ||||
| import sys, time, copy, torch, random, argparse | ||||
| from tqdm import tqdm | ||||
| @@ -39,7 +39,8 @@ def main(args): | ||||
|     criterion = torch.nn.MSELoss() | ||||
|  | ||||
|     shape_container = model.get_w_container().to_shape_container() | ||||
|     hypernet = HyperNet(shape_container, args.layer_dim, args.task_dim) | ||||
|     total_bar = 100 | ||||
|     hypernet = HyperNet(shape_container, args.layer_dim, args.task_dim, total_bar) | ||||
|     hypernet = hypernet.to(args.device) | ||||
|  | ||||
|     logger.log( | ||||
| @@ -52,14 +53,6 @@ def main(args): | ||||
|             time_string(), hypernet.numel() | ||||
|         ) | ||||
|     ) | ||||
|     # task_embed = torch.nn.Parameter(torch.Tensor(env_info["total"], args.task_dim)) | ||||
|     total_bar = 100 | ||||
|     task_embeds = [] | ||||
|     for i in range(total_bar): | ||||
|         tensor = torch.Tensor(1, args.task_dim).to(args.device) | ||||
|         task_embeds.append(torch.nn.Parameter(tensor)) | ||||
|     for task_embed in task_embeds: | ||||
|         trunc_normal_(task_embed, std=0.02) | ||||
|     for i in range(total_bar): | ||||
|         env_info["{:}-x".format(i)] = env_info["{:}-x".format(i)].to(args.device) | ||||
|         env_info["{:}-y".format(i)] = env_info["{:}-y".format(i)].to(args.device) | ||||
| @@ -67,9 +60,9 @@ def main(args): | ||||
|     model.train() | ||||
|     hypernet.train() | ||||
|  | ||||
|     parameters = list(hypernet.parameters()) + task_embeds | ||||
|     # optimizer = torch.optim.Adam(parameters, lr=args.init_lr, amsgrad=True) | ||||
|     optimizer = torch.optim.Adam(parameters, lr=args.init_lr, weight_decay=1e-5) | ||||
|     optimizer = torch.optim.Adam( | ||||
|         hypernet.parameters(), lr=args.init_lr, weight_decay=1e-5, amsgrad=True | ||||
|     ) | ||||
|     lr_scheduler = torch.optim.lr_scheduler.MultiStepLR( | ||||
|         optimizer, | ||||
|         milestones=[ | ||||
| @@ -97,10 +90,10 @@ def main(args): | ||||
|         # for ibatch in range(args.meta_batch): | ||||
|         for cur_time in range(total_bar): | ||||
|             # cur_time = random.randint(0, total_bar) | ||||
|             cur_task_embed = task_embeds[cur_time] | ||||
|             cur_container = hypernet(cur_task_embed) | ||||
|             cur_x = env_info["{:}-x".format(cur_time)].to(args.device) | ||||
|             cur_y = env_info["{:}-y".format(cur_time)].to(args.device) | ||||
|             # cur_task_embed = task_embeds[cur_time] | ||||
|             cur_container = hypernet(cur_time) | ||||
|             cur_x = env_info["{:}-x".format(cur_time)] | ||||
|             cur_y = env_info["{:}-y".format(cur_time)] | ||||
|             cur_dataset = TimeData(cur_time, cur_x, cur_y) | ||||
|  | ||||
|             preds = model.forward_with_container(cur_dataset.x, cur_container) | ||||
| @@ -126,10 +119,14 @@ def main(args): | ||||
|                 ) | ||||
|             ) | ||||
|  | ||||
|             success, best_score = hypernet.save_best(-loss_meter.avg) | ||||
|             if success: | ||||
|                 logger.log( | ||||
|                     "Achieve the best with best_score = {:.3f}".format(best_score) | ||||
|                 ) | ||||
|             save_checkpoint( | ||||
|                 { | ||||
|                     "hypernet": hypernet.state_dict(), | ||||
|                     "task_embed": task_embed, | ||||
|                     "lr_scheduler": lr_scheduler.state_dict(), | ||||
|                     "iepoch": iepoch, | ||||
|                 }, | ||||
| @@ -142,13 +139,15 @@ def main(args): | ||||
|  | ||||
|     print(model) | ||||
|     print(hypernet) | ||||
|     hypernet.load_best() | ||||
|  | ||||
|     w_container_per_epoch = dict() | ||||
|     for idx in range(0, total_bar): | ||||
|         future_time = env_info["{:}-timestamp".format(idx)] | ||||
|         future_x = env_info["{:}-x".format(idx)] | ||||
|         future_y = env_info["{:}-y".format(idx)] | ||||
|         future_container = hypernet(task_embeds[idx]) | ||||
|         # future_container = hypernet(task_embeds[idx]) | ||||
|         future_container = hypernet(idx) | ||||
|         w_container_per_epoch[idx] = future_container.no_grad_clone() | ||||
|         with torch.no_grad(): | ||||
|             future_y_hat = model.forward_with_container( | ||||
|   | ||||
| @@ -15,7 +15,12 @@ class HyperNet(super_core.SuperModule): | ||||
|     """The hyper-network.""" | ||||
|  | ||||
|     def __init__( | ||||
|         self, shape_container, layer_embeding, task_embedding, return_container=True | ||||
|         self, | ||||
|         shape_container, | ||||
|         layer_embeding, | ||||
|         task_embedding, | ||||
|         num_tasks, | ||||
|         return_container=True, | ||||
|     ): | ||||
|         super(HyperNet, self).__init__() | ||||
|         self._shape_container = shape_container | ||||
| @@ -28,36 +33,33 @@ class HyperNet(super_core.SuperModule): | ||||
|             "_super_layer_embed", | ||||
|             torch.nn.Parameter(torch.Tensor(self._num_layers, layer_embeding)), | ||||
|         ) | ||||
|         self.register_parameter( | ||||
|             "_super_task_embed", | ||||
|             torch.nn.Parameter(torch.Tensor(num_tasks, task_embedding)), | ||||
|         ) | ||||
|         trunc_normal_(self._super_layer_embed, std=0.02) | ||||
|         trunc_normal_(self._super_task_embed, std=0.02) | ||||
|  | ||||
|         model_kwargs = dict( | ||||
|             config=dict(model_type="dual_norm_mlp"), | ||||
|             input_dim=layer_embeding + task_embedding, | ||||
|             output_dim=max(self._numel_per_layer), | ||||
|             hidden_dims=[layer_embeding * 2] * 3, | ||||
|             hidden_dims=[(layer_embeding + task_embedding) * 2] * 3, | ||||
|             act_cls="gelu", | ||||
|             norm_cls="layer_norm_1d", | ||||
|             dropout=0.1, | ||||
|             dropout=0.2, | ||||
|         ) | ||||
|         self._generator = get_model(**model_kwargs) | ||||
|         """ | ||||
|         model_kwargs = dict( | ||||
|             input_dim=layer_embeding + task_embedding, | ||||
|             output_dim=max(self._numel_per_layer), | ||||
|             hidden_dim=layer_embeding * 4, | ||||
|             act_cls="sigmoid", | ||||
|             norm_cls="identity", | ||||
|         ) | ||||
|         self._generator = get_model(dict(model_type="simple_mlp"), **model_kwargs) | ||||
|         """ | ||||
|         self._return_container = return_container | ||||
|         print("generator: {:}".format(self._generator)) | ||||
|  | ||||
|     def forward_raw(self, task_embed): | ||||
|         # task_embed = F.normalize(task_embed, dim=-1, p=2) | ||||
|         # layer_embed = F.normalize(self._super_layer_embed, dim=-1, p=2) | ||||
|     def forward_raw(self, task_embed_id): | ||||
|         layer_embed = self._super_layer_embed | ||||
|         task_embed = task_embed.view(1, -1).expand(self._num_layers, -1) | ||||
|         task_embed = ( | ||||
|             self._super_task_embed[task_embed_id] | ||||
|             .view(1, -1) | ||||
|             .expand(self._num_layers, -1) | ||||
|         ) | ||||
|  | ||||
|         joint_embed = torch.cat((task_embed, layer_embed), dim=-1) | ||||
|         weights = self._generator(joint_embed) | ||||
|   | ||||
| @@ -2,7 +2,9 @@ | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 # | ||||
| ##################################################### | ||||
|  | ||||
| import os | ||||
| import abc | ||||
| import tempfile | ||||
| import warnings | ||||
| from typing import Optional, Union, Callable | ||||
| import torch | ||||
| @@ -16,6 +18,9 @@ from .super_utils import LayerOrder, SuperRunMode | ||||
| from .super_utils import TensorContainer | ||||
| from .super_utils import ShapeContainer | ||||
|  | ||||
| BEST_DIR_KEY = "best_model_dir" | ||||
| BEST_SCORE_KEY = "best_model_score" | ||||
|  | ||||
|  | ||||
| class SuperModule(abc.ABC, nn.Module): | ||||
|     """This class equips the nn.Module class with the ability to apply AutoDL.""" | ||||
| @@ -25,6 +30,7 @@ class SuperModule(abc.ABC, nn.Module): | ||||
|         self._super_run_type = SuperRunMode.Default | ||||
|         self._abstract_child = None | ||||
|         self._verbose = False | ||||
|         self._meta_info = {} | ||||
|  | ||||
|     def set_super_run_type(self, super_run_type): | ||||
|         def _reset_super_run(m): | ||||
| @@ -84,6 +90,34 @@ class SuperModule(abc.ABC, nn.Module): | ||||
|                 total += buf.numel() | ||||
|         return total | ||||
|  | ||||
|     def save_best(self, score): | ||||
|         if BEST_DIR_KEY not in self._meta_info: | ||||
|             tempdir = tempfile.mkdtemp("-xlayers") | ||||
|             self._meta_info[BEST_DIR_KEY] = tempdir | ||||
|         if BEST_SCORE_KEY not in self._meta_info: | ||||
|             self._meta_info[BEST_SCORE_KEY] = None | ||||
|         best_score = self._meta_info[BEST_SCORE_KEY] | ||||
|         if best_score is None or best_score < score: | ||||
|             best_save_path = os.path.join( | ||||
|                 self._meta_info[BEST_DIR_KEY], | ||||
|                 "best-{:}.pth".format(self.__class__.__name__), | ||||
|             ) | ||||
|             self._meta_info[BEST_SCORE_KEY] = score | ||||
|             torch.save(self.state_dict(), best_save_path) | ||||
|             return True, self._meta_info[BEST_SCORE_KEY] | ||||
|         else: | ||||
|             return False, self._meta_info[BEST_SCORE_KEY] | ||||
|  | ||||
|     def load_best(self): | ||||
|         if BEST_DIR_KEY not in self._meta_info or BEST_SCORE_KEY not in self._meta_info: | ||||
|             raise ValueError("Please call save_best at first") | ||||
|         best_save_path = os.path.join( | ||||
|             self._meta_info[BEST_DIR_KEY], | ||||
|             "best-{:}.pth".format(self.__class__.__name__), | ||||
|         ) | ||||
|         state_dict = torch.load(best_save_path) | ||||
|         self.load_state_dict(state_dict) | ||||
|  | ||||
|     @property | ||||
|     def abstract_search_space(self): | ||||
|         raise NotImplementedError | ||||
|   | ||||
		Reference in New Issue
	
	Block a user