This commit is contained in:
D-X-Y 2021-05-26 04:47:38 +00:00
parent 5eab0de53e
commit d557c328a8
4 changed files with 23 additions and 27 deletions

View File

@ -20,7 +20,7 @@ class MetaModelV1(super_core.SuperModule):
time_dim,
meta_timestamps,
dropout: float = 0.1,
seq_length: int = 10,
seq_length: int = None,
interval: float = None,
thresh: float = None,
):
@ -33,8 +33,7 @@ class MetaModelV1(super_core.SuperModule):
self._raw_meta_timestamps = meta_timestamps
assert interval is not None
self._interval = interval
self._seq_length = seq_length
self._thresh = interval * 50 if thresh is None else thresh
self._thresh = interval * seq_length if thresh is None else thresh
self.register_parameter(
"_super_layer_embed",
@ -45,10 +44,6 @@ class MetaModelV1(super_core.SuperModule):
torch.nn.Parameter(torch.Tensor(len(meta_timestamps), time_dim)),
)
self.register_buffer("_meta_timestamps", torch.Tensor(meta_timestamps))
# register a time difference buffer
# time_interval = [-i * self._interval for i in range(self._seq_length)]
# time_interval.reverse()
# self.register_buffer("_time_interval", torch.Tensor(time_interval))
self._time_embed_dim = time_dim
self._append_meta_embed = dict(fixed=None, learnt=None)
self._append_meta_timestamps = dict(fixed=None, learnt=None)
@ -186,7 +181,6 @@ class MetaModelV1(super_core.SuperModule):
def forward_raw(self, timestamps, time_embeds, tembed_only=False):
if time_embeds is None:
# time_seq = timestamps.view(-1, 1) + self._time_interval.view(1, -1)
[B] = timestamps.shape
time_embeds = self._obtain_time_embed(timestamps)
else: # use the hyper-net only
@ -210,7 +204,7 @@ class MetaModelV1(super_core.SuperModule):
batch_containers.append(
self._shape_container.translate(torch.split(weights.squeeze(0), 1))
)
return time_seq, batch_containers, time_embeds
return batch_containers, time_embeds
def forward_candidate(self, input):
raise NotImplementedError
@ -239,10 +233,10 @@ class MetaModelV1(super_core.SuperModule):
best_new_param = new_param.detach().clone()
for iepoch in range(epochs):
optimizer.zero_grad()
_, [_], time_embed = self(timestamp.view(1, 1), None)
_, time_embed = self(timestamp.view(1), None)
match_loss = criterion(new_param, time_embed)
_, [container], time_embed = self(None, new_param.view(1, -1))
[container], time_embed = self(None, new_param.view(1, -1))
y_hat = base_model.forward_with_container(x, container)
meta_loss = criterion(y_hat, y)
loss = meta_loss + match_loss

View File

@ -46,8 +46,8 @@ def online_evaluate(env, meta_model, base_model, criterion, args, logger, save=F
with torch.no_grad():
meta_model.eval()
base_model.eval()
_, [future_container], time_embeds = meta_model(
future_time.to(args.device).view(1, 1), None, False
[future_container], time_embeds = meta_model(
future_time.to(args.device).view(-1), None, False
)
if save:
w_containers[idx] = future_container.no_grad_clone()
@ -117,10 +117,10 @@ def meta_train_procedure(base_model, meta_model, criterion, xenv, args, logger):
)
# future loss
total_future_losses, total_present_losses = [], []
_, future_containers, _ = meta_model(
future_containers, _ = meta_model(
None, generated_time_embeds[batch_indexes], False
)
_, present_containers, _ = meta_model(
present_containers, _ = meta_model(
None, meta_model.super_meta_embed[batch_indexes], False
)
for ibatch, time_step in enumerate(raw_time_steps.cpu().tolist()):

View File

@ -1,6 +1,3 @@
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 #
#####################################################
import math
import abc
import numpy as np
@ -13,11 +10,11 @@ class UnifiedSplit:
"""A class to unify the split strategy."""
def __init__(self, total_num, mode):
# Training Set 65%
num_of_train = int(total_num * 0.65)
# Training Set 75%
num_of_train = int(total_num * 0.75)
# Validation Set 05%
num_of_valid = int(total_num * 0.05)
# Test Set 30%
# Test Set 20%
num_of_set = total_num - num_of_train - num_of_valid
all_indexes = list(range(total_num))
if mode is None:

View File

@ -1,27 +1,32 @@
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.01 #
#####################################################
import torch
import torch.nn as nn
import numpy as np
def count_parameters_in_MB(model):
return count_parameters(model, "mb")
return count_parameters(model, "mb", deprecated=True)
def count_parameters(model_or_parameters, unit="mb"):
def count_parameters(model_or_parameters, unit="mb", deprecated=False):
if isinstance(model_or_parameters, nn.Module):
counts = sum(np.prod(v.size()) for v in model_or_parameters.parameters())
elif isinstance(model_or_parameters, nn.Parameter):
counts = models_or_parameters.numel()
elif isinstance(model_or_parameters, (list, tuple)):
counts = sum(count_parameters(x, None) for x in models_or_parameters)
counts = sum(
count_parameters(x, None, deprecated) for x in models_or_parameters
)
else:
counts = sum(np.prod(v.size()) for v in model_or_parameters)
if unit.lower() == "kb" or unit.lower() == "k":
counts /= 2 ** 10 # changed from 1e3 to 2^10
counts /= 1e3 if deprecated else 2 ** 10 # changed from 1e3 to 2^10
elif unit.lower() == "mb" or unit.lower() == "m":
counts /= 2 ** 20 # changed from 1e6 to 2^20
counts /= 1e6 if deprecated else 2 ** 20 # changed from 1e6 to 2^20
elif unit.lower() == "gb" or unit.lower() == "g":
counts /= 2 ** 30 # changed from 1e9 to 2^30
counts /= 1e9 if deprecated else 2 ** 30 # changed from 1e9 to 2^30
elif unit is not None:
raise ValueError("Unknow unit: {:}".format(unit))
return counts