Fix bugs
This commit is contained in:
parent
5eab0de53e
commit
d557c328a8
@ -20,7 +20,7 @@ class MetaModelV1(super_core.SuperModule):
|
|||||||
time_dim,
|
time_dim,
|
||||||
meta_timestamps,
|
meta_timestamps,
|
||||||
dropout: float = 0.1,
|
dropout: float = 0.1,
|
||||||
seq_length: int = 10,
|
seq_length: int = None,
|
||||||
interval: float = None,
|
interval: float = None,
|
||||||
thresh: float = None,
|
thresh: float = None,
|
||||||
):
|
):
|
||||||
@ -33,8 +33,7 @@ class MetaModelV1(super_core.SuperModule):
|
|||||||
self._raw_meta_timestamps = meta_timestamps
|
self._raw_meta_timestamps = meta_timestamps
|
||||||
assert interval is not None
|
assert interval is not None
|
||||||
self._interval = interval
|
self._interval = interval
|
||||||
self._seq_length = seq_length
|
self._thresh = interval * seq_length if thresh is None else thresh
|
||||||
self._thresh = interval * 50 if thresh is None else thresh
|
|
||||||
|
|
||||||
self.register_parameter(
|
self.register_parameter(
|
||||||
"_super_layer_embed",
|
"_super_layer_embed",
|
||||||
@ -45,10 +44,6 @@ class MetaModelV1(super_core.SuperModule):
|
|||||||
torch.nn.Parameter(torch.Tensor(len(meta_timestamps), time_dim)),
|
torch.nn.Parameter(torch.Tensor(len(meta_timestamps), time_dim)),
|
||||||
)
|
)
|
||||||
self.register_buffer("_meta_timestamps", torch.Tensor(meta_timestamps))
|
self.register_buffer("_meta_timestamps", torch.Tensor(meta_timestamps))
|
||||||
# register a time difference buffer
|
|
||||||
# time_interval = [-i * self._interval for i in range(self._seq_length)]
|
|
||||||
# time_interval.reverse()
|
|
||||||
# self.register_buffer("_time_interval", torch.Tensor(time_interval))
|
|
||||||
self._time_embed_dim = time_dim
|
self._time_embed_dim = time_dim
|
||||||
self._append_meta_embed = dict(fixed=None, learnt=None)
|
self._append_meta_embed = dict(fixed=None, learnt=None)
|
||||||
self._append_meta_timestamps = dict(fixed=None, learnt=None)
|
self._append_meta_timestamps = dict(fixed=None, learnt=None)
|
||||||
@ -186,7 +181,6 @@ class MetaModelV1(super_core.SuperModule):
|
|||||||
|
|
||||||
def forward_raw(self, timestamps, time_embeds, tembed_only=False):
|
def forward_raw(self, timestamps, time_embeds, tembed_only=False):
|
||||||
if time_embeds is None:
|
if time_embeds is None:
|
||||||
# time_seq = timestamps.view(-1, 1) + self._time_interval.view(1, -1)
|
|
||||||
[B] = timestamps.shape
|
[B] = timestamps.shape
|
||||||
time_embeds = self._obtain_time_embed(timestamps)
|
time_embeds = self._obtain_time_embed(timestamps)
|
||||||
else: # use the hyper-net only
|
else: # use the hyper-net only
|
||||||
@ -210,7 +204,7 @@ class MetaModelV1(super_core.SuperModule):
|
|||||||
batch_containers.append(
|
batch_containers.append(
|
||||||
self._shape_container.translate(torch.split(weights.squeeze(0), 1))
|
self._shape_container.translate(torch.split(weights.squeeze(0), 1))
|
||||||
)
|
)
|
||||||
return time_seq, batch_containers, time_embeds
|
return batch_containers, time_embeds
|
||||||
|
|
||||||
def forward_candidate(self, input):
|
def forward_candidate(self, input):
|
||||||
raise NotImplementedError
|
raise NotImplementedError
|
||||||
@ -239,10 +233,10 @@ class MetaModelV1(super_core.SuperModule):
|
|||||||
best_new_param = new_param.detach().clone()
|
best_new_param = new_param.detach().clone()
|
||||||
for iepoch in range(epochs):
|
for iepoch in range(epochs):
|
||||||
optimizer.zero_grad()
|
optimizer.zero_grad()
|
||||||
_, [_], time_embed = self(timestamp.view(1, 1), None)
|
_, time_embed = self(timestamp.view(1), None)
|
||||||
match_loss = criterion(new_param, time_embed)
|
match_loss = criterion(new_param, time_embed)
|
||||||
|
|
||||||
_, [container], time_embed = self(None, new_param.view(1, -1))
|
[container], time_embed = self(None, new_param.view(1, -1))
|
||||||
y_hat = base_model.forward_with_container(x, container)
|
y_hat = base_model.forward_with_container(x, container)
|
||||||
meta_loss = criterion(y_hat, y)
|
meta_loss = criterion(y_hat, y)
|
||||||
loss = meta_loss + match_loss
|
loss = meta_loss + match_loss
|
||||||
|
@ -46,8 +46,8 @@ def online_evaluate(env, meta_model, base_model, criterion, args, logger, save=F
|
|||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
meta_model.eval()
|
meta_model.eval()
|
||||||
base_model.eval()
|
base_model.eval()
|
||||||
_, [future_container], time_embeds = meta_model(
|
[future_container], time_embeds = meta_model(
|
||||||
future_time.to(args.device).view(1, 1), None, False
|
future_time.to(args.device).view(-1), None, False
|
||||||
)
|
)
|
||||||
if save:
|
if save:
|
||||||
w_containers[idx] = future_container.no_grad_clone()
|
w_containers[idx] = future_container.no_grad_clone()
|
||||||
@ -117,10 +117,10 @@ def meta_train_procedure(base_model, meta_model, criterion, xenv, args, logger):
|
|||||||
)
|
)
|
||||||
# future loss
|
# future loss
|
||||||
total_future_losses, total_present_losses = [], []
|
total_future_losses, total_present_losses = [], []
|
||||||
_, future_containers, _ = meta_model(
|
future_containers, _ = meta_model(
|
||||||
None, generated_time_embeds[batch_indexes], False
|
None, generated_time_embeds[batch_indexes], False
|
||||||
)
|
)
|
||||||
_, present_containers, _ = meta_model(
|
present_containers, _ = meta_model(
|
||||||
None, meta_model.super_meta_embed[batch_indexes], False
|
None, meta_model.super_meta_embed[batch_indexes], False
|
||||||
)
|
)
|
||||||
for ibatch, time_step in enumerate(raw_time_steps.cpu().tolist()):
|
for ibatch, time_step in enumerate(raw_time_steps.cpu().tolist()):
|
||||||
|
@ -1,6 +1,3 @@
|
|||||||
#####################################################
|
|
||||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 #
|
|
||||||
#####################################################
|
|
||||||
import math
|
import math
|
||||||
import abc
|
import abc
|
||||||
import numpy as np
|
import numpy as np
|
||||||
@ -13,11 +10,11 @@ class UnifiedSplit:
|
|||||||
"""A class to unify the split strategy."""
|
"""A class to unify the split strategy."""
|
||||||
|
|
||||||
def __init__(self, total_num, mode):
|
def __init__(self, total_num, mode):
|
||||||
# Training Set 65%
|
# Training Set 75%
|
||||||
num_of_train = int(total_num * 0.65)
|
num_of_train = int(total_num * 0.75)
|
||||||
# Validation Set 05%
|
# Validation Set 05%
|
||||||
num_of_valid = int(total_num * 0.05)
|
num_of_valid = int(total_num * 0.05)
|
||||||
# Test Set 30%
|
# Test Set 20%
|
||||||
num_of_set = total_num - num_of_train - num_of_valid
|
num_of_set = total_num - num_of_train - num_of_valid
|
||||||
all_indexes = list(range(total_num))
|
all_indexes = list(range(total_num))
|
||||||
if mode is None:
|
if mode is None:
|
||||||
|
@ -1,27 +1,32 @@
|
|||||||
|
#####################################################
|
||||||
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.01 #
|
||||||
|
#####################################################
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
def count_parameters_in_MB(model):
|
def count_parameters_in_MB(model):
|
||||||
return count_parameters(model, "mb")
|
return count_parameters(model, "mb", deprecated=True)
|
||||||
|
|
||||||
|
|
||||||
def count_parameters(model_or_parameters, unit="mb"):
|
def count_parameters(model_or_parameters, unit="mb", deprecated=False):
|
||||||
if isinstance(model_or_parameters, nn.Module):
|
if isinstance(model_or_parameters, nn.Module):
|
||||||
counts = sum(np.prod(v.size()) for v in model_or_parameters.parameters())
|
counts = sum(np.prod(v.size()) for v in model_or_parameters.parameters())
|
||||||
elif isinstance(model_or_parameters, nn.Parameter):
|
elif isinstance(model_or_parameters, nn.Parameter):
|
||||||
counts = models_or_parameters.numel()
|
counts = models_or_parameters.numel()
|
||||||
elif isinstance(model_or_parameters, (list, tuple)):
|
elif isinstance(model_or_parameters, (list, tuple)):
|
||||||
counts = sum(count_parameters(x, None) for x in models_or_parameters)
|
counts = sum(
|
||||||
|
count_parameters(x, None, deprecated) for x in models_or_parameters
|
||||||
|
)
|
||||||
else:
|
else:
|
||||||
counts = sum(np.prod(v.size()) for v in model_or_parameters)
|
counts = sum(np.prod(v.size()) for v in model_or_parameters)
|
||||||
if unit.lower() == "kb" or unit.lower() == "k":
|
if unit.lower() == "kb" or unit.lower() == "k":
|
||||||
counts /= 2 ** 10 # changed from 1e3 to 2^10
|
counts /= 1e3 if deprecated else 2 ** 10 # changed from 1e3 to 2^10
|
||||||
elif unit.lower() == "mb" or unit.lower() == "m":
|
elif unit.lower() == "mb" or unit.lower() == "m":
|
||||||
counts /= 2 ** 20 # changed from 1e6 to 2^20
|
counts /= 1e6 if deprecated else 2 ** 20 # changed from 1e6 to 2^20
|
||||||
elif unit.lower() == "gb" or unit.lower() == "g":
|
elif unit.lower() == "gb" or unit.lower() == "g":
|
||||||
counts /= 2 ** 30 # changed from 1e9 to 2^30
|
counts /= 1e9 if deprecated else 2 ** 30 # changed from 1e9 to 2^30
|
||||||
elif unit is not None:
|
elif unit is not None:
|
||||||
raise ValueError("Unknow unit: {:}".format(unit))
|
raise ValueError("Unknow unit: {:}".format(unit))
|
||||||
return counts
|
return counts
|
||||||
|
Loading…
Reference in New Issue
Block a user