support first-order DARTS on the NASNet search space
This commit is contained in:
		
							
								
								
									
										9
									
								
								configs/search-archs/DARTS-NASNet-CIFAR.config
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										9
									
								
								configs/search-archs/DARTS-NASNet-CIFAR.config
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,9 @@ | ||||
| { | ||||
|   "super_type"      : ["str",  "nasnet-super"], | ||||
|   "name"            : ["str",  "GDAS"], | ||||
|   "C"               : ["int",  "16"  ], | ||||
|   "N"               : ["int",  "2"  ], | ||||
|   "steps"           : ["int",  "4"  ], | ||||
|   "multiplier"      : ["int",  "4"  ], | ||||
|   "stem_multiplier" : ["int",  "3"  ] | ||||
| } | ||||
							
								
								
									
										13
									
								
								configs/search-opts/DARTS-NASNet-CIFAR.config
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										13
									
								
								configs/search-opts/DARTS-NASNet-CIFAR.config
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,13 @@ | ||||
| { | ||||
|   "scheduler": ["str",   "cos"], | ||||
|   "LR"       : ["float", "0.025"], | ||||
|   "eta_min"  : ["float", "0.001"], | ||||
|   "epochs"   : ["int",   "50"], | ||||
|   "warmup"   : ["int",   "0"], | ||||
|   "optim"    : ["str",   "SGD"], | ||||
|   "decay"    : ["float", "0.0005"], | ||||
|   "momentum" : ["float", "0.9"], | ||||
|   "nesterov" : ["bool",  "1"], | ||||
|   "criterion": ["str",   "Softmax"], | ||||
|   "batch_size": ["int",  "256"] | ||||
| } | ||||
| @@ -46,13 +46,13 @@ If you want to train the searched architecture found by the above scripts, you n | ||||
| ### Searching on a small search space (NAS-Bench-201) | ||||
| The GDAS searching codes on a small search space: | ||||
| ``` | ||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/GDAS.sh cifar10 -1 | ||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/GDAS.sh cifar10 1 -1 | ||||
| ``` | ||||
|  | ||||
| The baseline searching codes are DARTS: | ||||
| ``` | ||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V1.sh cifar10 -1 | ||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V2.sh cifar10 -1 | ||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V1.sh cifar10 1 -1 | ||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V2.sh cifar10 1 -1 | ||||
| ``` | ||||
|  | ||||
| **After searching**, if you want to train the searched architecture found by the above scripts, please use the following codes: | ||||
|   | ||||
| @@ -32,7 +32,7 @@ CUDA_VISIBLE_DEVICES=0,1,2,3 bash ./scripts/nas-infer-train.sh imagenet-1k SETN | ||||
|  | ||||
| The searching codes of SETN on a small search space (NAS-Bench-201). | ||||
| ``` | ||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/SETN.sh cifar10 -1 | ||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/SETN.sh cifar10 1 -1 | ||||
| ``` | ||||
|  | ||||
|  | ||||
|   | ||||
| @@ -10,6 +10,11 @@ CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V2.sh cifar10 1 -1 | ||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/GDAS.sh     cifar10 1 -1 | ||||
| ``` | ||||
|  | ||||
| **Run the first-order DARTS on the NASNet search space**: | ||||
| ``` | ||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/DARTS1V-search-NASNet-space.sh cifar10 -1 | ||||
| ``` | ||||
|  | ||||
| # Citation | ||||
|  | ||||
| ``` | ||||
|   | ||||
| @@ -112,10 +112,14 @@ def main(xargs): | ||||
|   logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config)) | ||||
|  | ||||
|   search_space = get_search_spaces('cell', xargs.search_space_name) | ||||
|   model_config = dict2config({'name': 'DARTS-V1', 'C': xargs.channel, 'N': xargs.num_cells, | ||||
|                               'max_nodes': xargs.max_nodes, 'num_classes': class_num, | ||||
|                               'space'    : search_space, | ||||
|                               'affine'   : False, 'track_running_stats': bool(xargs.track_running_stats)}, None) | ||||
|   if xargs.model_config is None: | ||||
|     model_config = dict2config({'name': 'DARTS-V1', 'C': xargs.channel, 'N': xargs.num_cells, | ||||
|                                 'max_nodes': xargs.max_nodes, 'num_classes': class_num, | ||||
|                                 'space'    : search_space, | ||||
|                                 'affine'   : False, 'track_running_stats': bool(xargs.track_running_stats)}, None) | ||||
|   else: | ||||
|     model_config = load_config(xargs.model_config, {'num_classes': class_num, 'space'    : search_space, | ||||
|                                                     'affine'     : False, 'track_running_stats': bool(xargs.track_running_stats)}, None) | ||||
|   search_model = get_cell_based_tiny_net(model_config) | ||||
|   logger.log('search-model :\n{:}'.format(search_model)) | ||||
|    | ||||
| @@ -213,12 +217,13 @@ if __name__ == '__main__': | ||||
|   parser.add_argument('--data_path',          type=str,   help='Path to dataset') | ||||
|   parser.add_argument('--dataset',            type=str,   choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.') | ||||
|   # channels and number-of-cells | ||||
|   parser.add_argument('--config_path',        type=str,   help='The config path.') | ||||
|   parser.add_argument('--search_space_name',  type=str,   help='The search space name.') | ||||
|   parser.add_argument('--max_nodes',          type=int,   help='The maximum number of nodes.') | ||||
|   parser.add_argument('--channel',            type=int,   help='The number of channels.') | ||||
|   parser.add_argument('--num_cells',          type=int,   help='The number of cells in one stage.') | ||||
|   parser.add_argument('--track_running_stats',type=int,   choices=[0,1],help='Whether use track_running_stats or not in the BN layer.') | ||||
|   parser.add_argument('--config_path',        type=str,   help='The config path.') | ||||
|   parser.add_argument('--model_config',       type=str,   help='The path of the model configuration. When this arg is set, it will cover max_nodes / channels / num_cells.') | ||||
|   # architecture leraning rate | ||||
|   parser.add_argument('--arch_learning_rate', type=float, default=3e-4, help='learning rate for arch encoding') | ||||
|   parser.add_argument('--arch_weight_decay',  type=float, default=1e-3, help='weight decay for arch encoding') | ||||
|   | ||||
| @@ -10,6 +10,7 @@ from .search_model_random   import TinyNetworkRANDOM | ||||
| from .genotypes             import Structure as CellStructure, architectures as CellArchitectures | ||||
| # NASNet-based macro structure | ||||
| from .search_model_gdas_nasnet import NASNetworkGDAS | ||||
| from .search_model_darts_nasnet import NASNetworkDARTS | ||||
|  | ||||
|  | ||||
| nas201_super_nets = {'DARTS-V1': TinyNetworkDarts, | ||||
| @@ -19,4 +20,5 @@ nas201_super_nets = {'DARTS-V1': TinyNetworkDarts, | ||||
|                   'ENAS'    : TinyNetworkENAS, | ||||
|                   'RANDOM'  : TinyNetworkRANDOM} | ||||
|  | ||||
| nasnet_super_nets = {'GDAS' : NASNetworkGDAS} | ||||
| nasnet_super_nets = {'GDAS' : NASNetworkGDAS, | ||||
|                      'DARTS': NASNetworkDARTS} | ||||
|   | ||||
| @@ -131,10 +131,12 @@ class MixedOp(nn.Module): | ||||
|       op = OPS[primitive](C, C, stride, affine, track_running_stats) | ||||
|       self._ops.append(op) | ||||
|  | ||||
|   def forward(self, x, weights, index): | ||||
|     #return sum(w * op(x) for w, op in zip(weights, self._ops)) | ||||
|   def forward_gdas(self, x, weights, index): | ||||
|     return self._ops[index](x) * weights[index] | ||||
|  | ||||
|   def forward_darts(self, x, weights): | ||||
|     return sum(w * op(x) for w, op in zip(weights, self._ops)) | ||||
|  | ||||
|  | ||||
| # Learning Transferable Architectures for Scalable Image Recognition, CVPR 2018 | ||||
| class NASNetSearchCell(nn.Module): | ||||
| @@ -173,7 +175,23 @@ class NASNetSearchCell(nn.Module): | ||||
|         op = self.edges[ node_str ] | ||||
|         weights = weightss[ self.edge2index[node_str] ] | ||||
|         index   = indexs[ self.edge2index[node_str] ].item() | ||||
|         clist.append( op(h, weights, index) ) | ||||
|         clist.append( op.forward_gdas(h, weights, index) ) | ||||
|       states.append( sum(clist) ) | ||||
|  | ||||
|     return torch.cat(states[-self._multiplier:], dim=1) | ||||
|  | ||||
|   def forward_darts(self, s0, s1, weightss): | ||||
|     s0 = self.preprocess0(s0) | ||||
|     s1 = self.preprocess1(s1) | ||||
|  | ||||
|     states = [s0, s1] | ||||
|     for i in range(self._steps): | ||||
|       clist = [] | ||||
|       for j, h in enumerate(states): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         op = self.edges[ node_str ] | ||||
|         weights = weightss[ self.edge2index[node_str] ] | ||||
|         clist.append( op.forward_darts(h, weights) ) | ||||
|       states.append( sum(clist) ) | ||||
|  | ||||
|     return torch.cat(states[-self._multiplier:], dim=1) | ||||
|   | ||||
							
								
								
									
										107
									
								
								lib/models/cell_searchs/search_model_darts_nasnet.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										107
									
								
								lib/models/cell_searchs/search_model_darts_nasnet.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,107 @@ | ||||
| #################### | ||||
| # DARTS, ICLR 2019 #  | ||||
| #################### | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from .search_cells     import NASNetSearchCell as SearchCell | ||||
| from .genotypes        import Structure | ||||
|  | ||||
|  | ||||
| # The macro structure is based on NASNet | ||||
| class NASNetworkDARTS(nn.Module): | ||||
|  | ||||
|   def __init__(self, C, N, steps, multiplier, stem_multiplier, num_classes, search_space, affine, track_running_stats): | ||||
|     super(NASNetworkDARTS, self).__init__() | ||||
|     self._C        = C | ||||
|     self._layerN   = N | ||||
|     self._steps    = steps | ||||
|     self._multiplier = multiplier | ||||
|     self.stem = nn.Sequential( | ||||
|                     nn.Conv2d(3, C*stem_multiplier, kernel_size=3, padding=1, bias=False), | ||||
|                     nn.BatchNorm2d(C*stem_multiplier)) | ||||
|    | ||||
|     # config for each layer | ||||
|     layer_channels   = [C    ] * N + [C*2 ] + [C*2  ] * (N-1) + [C*4 ] + [C*4  ] * (N-1) | ||||
|     layer_reductions = [False] * N + [True] + [False] * (N-1) + [True] + [False] * (N-1) | ||||
|  | ||||
|     num_edge, edge2index = None, None | ||||
|     C_prev_prev, C_prev, C_curr, reduction_prev = C*stem_multiplier, C*stem_multiplier, C, False | ||||
|  | ||||
|     self.cells = nn.ModuleList() | ||||
|     for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)): | ||||
|       cell = SearchCell(search_space, steps, multiplier, C_prev_prev, C_prev, C_curr, reduction, reduction_prev, affine, track_running_stats) | ||||
|       if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|       else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges) | ||||
|       self.cells.append( cell ) | ||||
|       C_prev_prev, C_prev, reduction_prev = C_prev, multiplier*C_curr, reduction | ||||
|     self.op_names   = deepcopy( search_space ) | ||||
|     self._Layer     = len(self.cells) | ||||
|     self.edge2index = edge2index | ||||
|     self.lastact    = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|     self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|     self.classifier = nn.Linear(C_prev, num_classes) | ||||
|     self.arch_normal_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) ) | ||||
|     self.arch_reduce_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) ) | ||||
|  | ||||
|   def get_weights(self): | ||||
|     xlist = list( self.stem.parameters() ) + list( self.cells.parameters() ) | ||||
|     xlist+= list( self.lastact.parameters() ) + list( self.global_pooling.parameters() ) | ||||
|     xlist+= list( self.classifier.parameters() ) | ||||
|     return xlist | ||||
|  | ||||
|   def get_alphas(self): | ||||
|     return [self.arch_normal_parameters, self.arch_reduce_parameters] | ||||
|  | ||||
|   def show_alphas(self): | ||||
|     with torch.no_grad(): | ||||
|       A = 'arch-normal-parameters :\n{:}'.format( nn.functional.softmax(self.arch_normal_parameters, dim=-1).cpu() ) | ||||
|       B = 'arch-reduce-parameters :\n{:}'.format( nn.functional.softmax(self.arch_reduce_parameters, dim=-1).cpu() ) | ||||
|     return '{:}\n{:}'.format(A, B) | ||||
|  | ||||
|   def get_message(self): | ||||
|     string = self.extra_repr() | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr()) | ||||
|     return string | ||||
|  | ||||
|   def extra_repr(self): | ||||
|     return ('{name}(C={_C}, N={_layerN}, steps={_steps}, multiplier={_multiplier}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__)) | ||||
|  | ||||
|   def genotype(self): | ||||
|     def _parse(weights): | ||||
|       gene = [] | ||||
|       for i in range(self._steps): | ||||
|         edges = [] | ||||
|         for j in range(2+i): | ||||
|           node_str = '{:}<-{:}'.format(i, j) | ||||
|           ws = weights[ self.edge2index[node_str] ] | ||||
|           for k, op_name in enumerate(self.op_names): | ||||
|             if op_name == 'none': continue | ||||
|             edges.append( (op_name, j, ws[k]) ) | ||||
|         edges = sorted(edges, key=lambda x: -x[-1]) | ||||
|         selected_edges = edges[:2] | ||||
|         gene.append( tuple(selected_edges) ) | ||||
|       return gene | ||||
|     with torch.no_grad(): | ||||
|       gene_normal = _parse(torch.softmax(self.arch_normal_parameters, dim=-1).cpu().numpy()) | ||||
|       gene_reduce = _parse(torch.softmax(self.arch_reduce_parameters, dim=-1).cpu().numpy()) | ||||
|     return {'normal': gene_normal, 'normal_concat': list(range(2+self._steps-self._multiplier, self._steps+2)), | ||||
|             'reduce': gene_reduce, 'reduce_concat': list(range(2+self._steps-self._multiplier, self._steps+2))} | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|  | ||||
|     normal_w = nn.functional.softmax(self.arch_normal_parameters, dim=1) | ||||
|     reduce_w = nn.functional.softmax(self.arch_reduce_parameters, dim=1) | ||||
|  | ||||
|     s0 = s1 = self.stem(inputs) | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       if cell.reduction: ww = reduce_w | ||||
|       else             : ww = normal_w | ||||
|       s0, s1 = s1, cell.forward_darts(s0, s1, ww) | ||||
|     out = self.lastact(s1) | ||||
|     out = self.global_pooling( out ) | ||||
|     out = out.view(out.size(0), -1) | ||||
|     logits = self.classifier(out) | ||||
|  | ||||
|     return out, logits | ||||
							
								
								
									
										41
									
								
								scripts-search/DARTS1V-search-NASNet-space.sh
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										41
									
								
								scripts-search/DARTS1V-search-NASNet-space.sh
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,41 @@ | ||||
| #!/bin/bash | ||||
| # bash ./scripts-search/DARTS1V-search-NASNet-space.sh cifar10 -1 | ||||
| echo script name: $0 | ||||
| echo $# arguments | ||||
| if [ "$#" -ne 2 ] ;then | ||||
|   echo "Input illegal number of parameters " $# | ||||
|   echo "Need 2 parameters for dataset, and seed" | ||||
|   exit 1 | ||||
| fi | ||||
| if [ "$TORCH_HOME" = "" ]; then | ||||
|   echo "Must set TORCH_HOME envoriment variable for data dir saving" | ||||
|   exit 1 | ||||
| else | ||||
|   echo "TORCH_HOME : $TORCH_HOME" | ||||
| fi | ||||
|  | ||||
| dataset=$1 | ||||
| BN=1 | ||||
| seed=$2 | ||||
| channel=16 | ||||
| num_cells=5 | ||||
| max_nodes=4 | ||||
| space=darts | ||||
|  | ||||
| if [ "$dataset" == "cifar10" ] || [ "$dataset" == "cifar100" ]; then | ||||
|   data_path="$TORCH_HOME/cifar.python" | ||||
| else | ||||
|   data_path="$TORCH_HOME/cifar.python/ImageNet16" | ||||
| fi | ||||
|  | ||||
| save_dir=./output/search-cell-${space}/DARTS-V1-${dataset}-BN${BN} | ||||
|  | ||||
| OMP_NUM_THREADS=4 python ./exps/algos/DARTS-V1.py \ | ||||
| 	--save_dir ${save_dir} --max_nodes ${max_nodes} --channel ${channel} --num_cells ${num_cells} \ | ||||
| 	--dataset ${dataset} --data_path ${data_path} \ | ||||
| 	--search_space_name ${space} \ | ||||
| 	--config_path configs/search-opts/DARTS-NASNet-CIFAR.config \ | ||||
| 	--model_config configs/search-archs/GDAS-NASNet-CIFAR.config \ | ||||
| 	--track_running_stats ${BN} \ | ||||
| 	--arch_learning_rate 0.0003 --arch_weight_decay 0.001 \ | ||||
| 	--workers 4 --print_freq 200 --rand_seed ${seed} | ||||
		Reference in New Issue
	
	Block a user