support first-order DARTS on the NASNet search space
This commit is contained in:
		
							
								
								
									
										9
									
								
								configs/search-archs/DARTS-NASNet-CIFAR.config
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										9
									
								
								configs/search-archs/DARTS-NASNet-CIFAR.config
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,9 @@ | |||||||
|  | { | ||||||
|  |   "super_type"      : ["str",  "nasnet-super"], | ||||||
|  |   "name"            : ["str",  "GDAS"], | ||||||
|  |   "C"               : ["int",  "16"  ], | ||||||
|  |   "N"               : ["int",  "2"  ], | ||||||
|  |   "steps"           : ["int",  "4"  ], | ||||||
|  |   "multiplier"      : ["int",  "4"  ], | ||||||
|  |   "stem_multiplier" : ["int",  "3"  ] | ||||||
|  | } | ||||||
							
								
								
									
										13
									
								
								configs/search-opts/DARTS-NASNet-CIFAR.config
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										13
									
								
								configs/search-opts/DARTS-NASNet-CIFAR.config
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,13 @@ | |||||||
|  | { | ||||||
|  |   "scheduler": ["str",   "cos"], | ||||||
|  |   "LR"       : ["float", "0.025"], | ||||||
|  |   "eta_min"  : ["float", "0.001"], | ||||||
|  |   "epochs"   : ["int",   "50"], | ||||||
|  |   "warmup"   : ["int",   "0"], | ||||||
|  |   "optim"    : ["str",   "SGD"], | ||||||
|  |   "decay"    : ["float", "0.0005"], | ||||||
|  |   "momentum" : ["float", "0.9"], | ||||||
|  |   "nesterov" : ["bool",  "1"], | ||||||
|  |   "criterion": ["str",   "Softmax"], | ||||||
|  |   "batch_size": ["int",  "256"] | ||||||
|  | } | ||||||
| @@ -46,13 +46,13 @@ If you want to train the searched architecture found by the above scripts, you n | |||||||
| ### Searching on a small search space (NAS-Bench-201) | ### Searching on a small search space (NAS-Bench-201) | ||||||
| The GDAS searching codes on a small search space: | The GDAS searching codes on a small search space: | ||||||
| ``` | ``` | ||||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/GDAS.sh cifar10 -1 | CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/GDAS.sh cifar10 1 -1 | ||||||
| ``` | ``` | ||||||
|  |  | ||||||
| The baseline searching codes are DARTS: | The baseline searching codes are DARTS: | ||||||
| ``` | ``` | ||||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V1.sh cifar10 -1 | CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V1.sh cifar10 1 -1 | ||||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V2.sh cifar10 -1 | CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V2.sh cifar10 1 -1 | ||||||
| ``` | ``` | ||||||
|  |  | ||||||
| **After searching**, if you want to train the searched architecture found by the above scripts, please use the following codes: | **After searching**, if you want to train the searched architecture found by the above scripts, please use the following codes: | ||||||
|   | |||||||
| @@ -32,7 +32,7 @@ CUDA_VISIBLE_DEVICES=0,1,2,3 bash ./scripts/nas-infer-train.sh imagenet-1k SETN | |||||||
|  |  | ||||||
| The searching codes of SETN on a small search space (NAS-Bench-201). | The searching codes of SETN on a small search space (NAS-Bench-201). | ||||||
| ``` | ``` | ||||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/SETN.sh cifar10 -1 | CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/SETN.sh cifar10 1 -1 | ||||||
| ``` | ``` | ||||||
|  |  | ||||||
|  |  | ||||||
|   | |||||||
| @@ -10,6 +10,11 @@ CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V2.sh cifar10 1 -1 | |||||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/GDAS.sh     cifar10 1 -1 | CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/GDAS.sh     cifar10 1 -1 | ||||||
| ``` | ``` | ||||||
|  |  | ||||||
|  | **Run the first-order DARTS on the NASNet search space**: | ||||||
|  | ``` | ||||||
|  | CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/DARTS1V-search-NASNet-space.sh cifar10 -1 | ||||||
|  | ``` | ||||||
|  |  | ||||||
| # Citation | # Citation | ||||||
|  |  | ||||||
| ``` | ``` | ||||||
|   | |||||||
| @@ -112,10 +112,14 @@ def main(xargs): | |||||||
|   logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config)) |   logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config)) | ||||||
|  |  | ||||||
|   search_space = get_search_spaces('cell', xargs.search_space_name) |   search_space = get_search_spaces('cell', xargs.search_space_name) | ||||||
|   model_config = dict2config({'name': 'DARTS-V1', 'C': xargs.channel, 'N': xargs.num_cells, |   if xargs.model_config is None: | ||||||
|                               'max_nodes': xargs.max_nodes, 'num_classes': class_num, |     model_config = dict2config({'name': 'DARTS-V1', 'C': xargs.channel, 'N': xargs.num_cells, | ||||||
|                               'space'    : search_space, |                                 'max_nodes': xargs.max_nodes, 'num_classes': class_num, | ||||||
|                               'affine'   : False, 'track_running_stats': bool(xargs.track_running_stats)}, None) |                                 'space'    : search_space, | ||||||
|  |                                 'affine'   : False, 'track_running_stats': bool(xargs.track_running_stats)}, None) | ||||||
|  |   else: | ||||||
|  |     model_config = load_config(xargs.model_config, {'num_classes': class_num, 'space'    : search_space, | ||||||
|  |                                                     'affine'     : False, 'track_running_stats': bool(xargs.track_running_stats)}, None) | ||||||
|   search_model = get_cell_based_tiny_net(model_config) |   search_model = get_cell_based_tiny_net(model_config) | ||||||
|   logger.log('search-model :\n{:}'.format(search_model)) |   logger.log('search-model :\n{:}'.format(search_model)) | ||||||
|    |    | ||||||
| @@ -213,12 +217,13 @@ if __name__ == '__main__': | |||||||
|   parser.add_argument('--data_path',          type=str,   help='Path to dataset') |   parser.add_argument('--data_path',          type=str,   help='Path to dataset') | ||||||
|   parser.add_argument('--dataset',            type=str,   choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.') |   parser.add_argument('--dataset',            type=str,   choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.') | ||||||
|   # channels and number-of-cells |   # channels and number-of-cells | ||||||
|   parser.add_argument('--config_path',        type=str,   help='The config path.') |  | ||||||
|   parser.add_argument('--search_space_name',  type=str,   help='The search space name.') |   parser.add_argument('--search_space_name',  type=str,   help='The search space name.') | ||||||
|   parser.add_argument('--max_nodes',          type=int,   help='The maximum number of nodes.') |   parser.add_argument('--max_nodes',          type=int,   help='The maximum number of nodes.') | ||||||
|   parser.add_argument('--channel',            type=int,   help='The number of channels.') |   parser.add_argument('--channel',            type=int,   help='The number of channels.') | ||||||
|   parser.add_argument('--num_cells',          type=int,   help='The number of cells in one stage.') |   parser.add_argument('--num_cells',          type=int,   help='The number of cells in one stage.') | ||||||
|   parser.add_argument('--track_running_stats',type=int,   choices=[0,1],help='Whether use track_running_stats or not in the BN layer.') |   parser.add_argument('--track_running_stats',type=int,   choices=[0,1],help='Whether use track_running_stats or not in the BN layer.') | ||||||
|  |   parser.add_argument('--config_path',        type=str,   help='The config path.') | ||||||
|  |   parser.add_argument('--model_config',       type=str,   help='The path of the model configuration. When this arg is set, it will cover max_nodes / channels / num_cells.') | ||||||
|   # architecture leraning rate |   # architecture leraning rate | ||||||
|   parser.add_argument('--arch_learning_rate', type=float, default=3e-4, help='learning rate for arch encoding') |   parser.add_argument('--arch_learning_rate', type=float, default=3e-4, help='learning rate for arch encoding') | ||||||
|   parser.add_argument('--arch_weight_decay',  type=float, default=1e-3, help='weight decay for arch encoding') |   parser.add_argument('--arch_weight_decay',  type=float, default=1e-3, help='weight decay for arch encoding') | ||||||
|   | |||||||
| @@ -10,6 +10,7 @@ from .search_model_random   import TinyNetworkRANDOM | |||||||
| from .genotypes             import Structure as CellStructure, architectures as CellArchitectures | from .genotypes             import Structure as CellStructure, architectures as CellArchitectures | ||||||
| # NASNet-based macro structure | # NASNet-based macro structure | ||||||
| from .search_model_gdas_nasnet import NASNetworkGDAS | from .search_model_gdas_nasnet import NASNetworkGDAS | ||||||
|  | from .search_model_darts_nasnet import NASNetworkDARTS | ||||||
|  |  | ||||||
|  |  | ||||||
| nas201_super_nets = {'DARTS-V1': TinyNetworkDarts, | nas201_super_nets = {'DARTS-V1': TinyNetworkDarts, | ||||||
| @@ -19,4 +20,5 @@ nas201_super_nets = {'DARTS-V1': TinyNetworkDarts, | |||||||
|                   'ENAS'    : TinyNetworkENAS, |                   'ENAS'    : TinyNetworkENAS, | ||||||
|                   'RANDOM'  : TinyNetworkRANDOM} |                   'RANDOM'  : TinyNetworkRANDOM} | ||||||
|  |  | ||||||
| nasnet_super_nets = {'GDAS' : NASNetworkGDAS} | nasnet_super_nets = {'GDAS' : NASNetworkGDAS, | ||||||
|  |                      'DARTS': NASNetworkDARTS} | ||||||
|   | |||||||
| @@ -131,10 +131,12 @@ class MixedOp(nn.Module): | |||||||
|       op = OPS[primitive](C, C, stride, affine, track_running_stats) |       op = OPS[primitive](C, C, stride, affine, track_running_stats) | ||||||
|       self._ops.append(op) |       self._ops.append(op) | ||||||
|  |  | ||||||
|   def forward(self, x, weights, index): |   def forward_gdas(self, x, weights, index): | ||||||
|     #return sum(w * op(x) for w, op in zip(weights, self._ops)) |  | ||||||
|     return self._ops[index](x) * weights[index] |     return self._ops[index](x) * weights[index] | ||||||
|  |  | ||||||
|  |   def forward_darts(self, x, weights): | ||||||
|  |     return sum(w * op(x) for w, op in zip(weights, self._ops)) | ||||||
|  |  | ||||||
|  |  | ||||||
| # Learning Transferable Architectures for Scalable Image Recognition, CVPR 2018 | # Learning Transferable Architectures for Scalable Image Recognition, CVPR 2018 | ||||||
| class NASNetSearchCell(nn.Module): | class NASNetSearchCell(nn.Module): | ||||||
| @@ -173,7 +175,23 @@ class NASNetSearchCell(nn.Module): | |||||||
|         op = self.edges[ node_str ] |         op = self.edges[ node_str ] | ||||||
|         weights = weightss[ self.edge2index[node_str] ] |         weights = weightss[ self.edge2index[node_str] ] | ||||||
|         index   = indexs[ self.edge2index[node_str] ].item() |         index   = indexs[ self.edge2index[node_str] ].item() | ||||||
|         clist.append( op(h, weights, index) ) |         clist.append( op.forward_gdas(h, weights, index) ) | ||||||
|  |       states.append( sum(clist) ) | ||||||
|  |  | ||||||
|  |     return torch.cat(states[-self._multiplier:], dim=1) | ||||||
|  |  | ||||||
|  |   def forward_darts(self, s0, s1, weightss): | ||||||
|  |     s0 = self.preprocess0(s0) | ||||||
|  |     s1 = self.preprocess1(s1) | ||||||
|  |  | ||||||
|  |     states = [s0, s1] | ||||||
|  |     for i in range(self._steps): | ||||||
|  |       clist = [] | ||||||
|  |       for j, h in enumerate(states): | ||||||
|  |         node_str = '{:}<-{:}'.format(i, j) | ||||||
|  |         op = self.edges[ node_str ] | ||||||
|  |         weights = weightss[ self.edge2index[node_str] ] | ||||||
|  |         clist.append( op.forward_darts(h, weights) ) | ||||||
|       states.append( sum(clist) ) |       states.append( sum(clist) ) | ||||||
|  |  | ||||||
|     return torch.cat(states[-self._multiplier:], dim=1) |     return torch.cat(states[-self._multiplier:], dim=1) | ||||||
|   | |||||||
							
								
								
									
										107
									
								
								lib/models/cell_searchs/search_model_darts_nasnet.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										107
									
								
								lib/models/cell_searchs/search_model_darts_nasnet.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,107 @@ | |||||||
|  | #################### | ||||||
|  | # DARTS, ICLR 2019 #  | ||||||
|  | #################### | ||||||
|  | import torch | ||||||
|  | import torch.nn as nn | ||||||
|  | from copy import deepcopy | ||||||
|  | from .search_cells     import NASNetSearchCell as SearchCell | ||||||
|  | from .genotypes        import Structure | ||||||
|  |  | ||||||
|  |  | ||||||
|  | # The macro structure is based on NASNet | ||||||
|  | class NASNetworkDARTS(nn.Module): | ||||||
|  |  | ||||||
|  |   def __init__(self, C, N, steps, multiplier, stem_multiplier, num_classes, search_space, affine, track_running_stats): | ||||||
|  |     super(NASNetworkDARTS, self).__init__() | ||||||
|  |     self._C        = C | ||||||
|  |     self._layerN   = N | ||||||
|  |     self._steps    = steps | ||||||
|  |     self._multiplier = multiplier | ||||||
|  |     self.stem = nn.Sequential( | ||||||
|  |                     nn.Conv2d(3, C*stem_multiplier, kernel_size=3, padding=1, bias=False), | ||||||
|  |                     nn.BatchNorm2d(C*stem_multiplier)) | ||||||
|  |    | ||||||
|  |     # config for each layer | ||||||
|  |     layer_channels   = [C    ] * N + [C*2 ] + [C*2  ] * (N-1) + [C*4 ] + [C*4  ] * (N-1) | ||||||
|  |     layer_reductions = [False] * N + [True] + [False] * (N-1) + [True] + [False] * (N-1) | ||||||
|  |  | ||||||
|  |     num_edge, edge2index = None, None | ||||||
|  |     C_prev_prev, C_prev, C_curr, reduction_prev = C*stem_multiplier, C*stem_multiplier, C, False | ||||||
|  |  | ||||||
|  |     self.cells = nn.ModuleList() | ||||||
|  |     for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)): | ||||||
|  |       cell = SearchCell(search_space, steps, multiplier, C_prev_prev, C_prev, C_curr, reduction, reduction_prev, affine, track_running_stats) | ||||||
|  |       if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index | ||||||
|  |       else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges) | ||||||
|  |       self.cells.append( cell ) | ||||||
|  |       C_prev_prev, C_prev, reduction_prev = C_prev, multiplier*C_curr, reduction | ||||||
|  |     self.op_names   = deepcopy( search_space ) | ||||||
|  |     self._Layer     = len(self.cells) | ||||||
|  |     self.edge2index = edge2index | ||||||
|  |     self.lastact    = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||||
|  |     self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||||
|  |     self.classifier = nn.Linear(C_prev, num_classes) | ||||||
|  |     self.arch_normal_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) ) | ||||||
|  |     self.arch_reduce_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) ) | ||||||
|  |  | ||||||
|  |   def get_weights(self): | ||||||
|  |     xlist = list( self.stem.parameters() ) + list( self.cells.parameters() ) | ||||||
|  |     xlist+= list( self.lastact.parameters() ) + list( self.global_pooling.parameters() ) | ||||||
|  |     xlist+= list( self.classifier.parameters() ) | ||||||
|  |     return xlist | ||||||
|  |  | ||||||
|  |   def get_alphas(self): | ||||||
|  |     return [self.arch_normal_parameters, self.arch_reduce_parameters] | ||||||
|  |  | ||||||
|  |   def show_alphas(self): | ||||||
|  |     with torch.no_grad(): | ||||||
|  |       A = 'arch-normal-parameters :\n{:}'.format( nn.functional.softmax(self.arch_normal_parameters, dim=-1).cpu() ) | ||||||
|  |       B = 'arch-reduce-parameters :\n{:}'.format( nn.functional.softmax(self.arch_reduce_parameters, dim=-1).cpu() ) | ||||||
|  |     return '{:}\n{:}'.format(A, B) | ||||||
|  |  | ||||||
|  |   def get_message(self): | ||||||
|  |     string = self.extra_repr() | ||||||
|  |     for i, cell in enumerate(self.cells): | ||||||
|  |       string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr()) | ||||||
|  |     return string | ||||||
|  |  | ||||||
|  |   def extra_repr(self): | ||||||
|  |     return ('{name}(C={_C}, N={_layerN}, steps={_steps}, multiplier={_multiplier}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__)) | ||||||
|  |  | ||||||
|  |   def genotype(self): | ||||||
|  |     def _parse(weights): | ||||||
|  |       gene = [] | ||||||
|  |       for i in range(self._steps): | ||||||
|  |         edges = [] | ||||||
|  |         for j in range(2+i): | ||||||
|  |           node_str = '{:}<-{:}'.format(i, j) | ||||||
|  |           ws = weights[ self.edge2index[node_str] ] | ||||||
|  |           for k, op_name in enumerate(self.op_names): | ||||||
|  |             if op_name == 'none': continue | ||||||
|  |             edges.append( (op_name, j, ws[k]) ) | ||||||
|  |         edges = sorted(edges, key=lambda x: -x[-1]) | ||||||
|  |         selected_edges = edges[:2] | ||||||
|  |         gene.append( tuple(selected_edges) ) | ||||||
|  |       return gene | ||||||
|  |     with torch.no_grad(): | ||||||
|  |       gene_normal = _parse(torch.softmax(self.arch_normal_parameters, dim=-1).cpu().numpy()) | ||||||
|  |       gene_reduce = _parse(torch.softmax(self.arch_reduce_parameters, dim=-1).cpu().numpy()) | ||||||
|  |     return {'normal': gene_normal, 'normal_concat': list(range(2+self._steps-self._multiplier, self._steps+2)), | ||||||
|  |             'reduce': gene_reduce, 'reduce_concat': list(range(2+self._steps-self._multiplier, self._steps+2))} | ||||||
|  |  | ||||||
|  |   def forward(self, inputs): | ||||||
|  |  | ||||||
|  |     normal_w = nn.functional.softmax(self.arch_normal_parameters, dim=1) | ||||||
|  |     reduce_w = nn.functional.softmax(self.arch_reduce_parameters, dim=1) | ||||||
|  |  | ||||||
|  |     s0 = s1 = self.stem(inputs) | ||||||
|  |     for i, cell in enumerate(self.cells): | ||||||
|  |       if cell.reduction: ww = reduce_w | ||||||
|  |       else             : ww = normal_w | ||||||
|  |       s0, s1 = s1, cell.forward_darts(s0, s1, ww) | ||||||
|  |     out = self.lastact(s1) | ||||||
|  |     out = self.global_pooling( out ) | ||||||
|  |     out = out.view(out.size(0), -1) | ||||||
|  |     logits = self.classifier(out) | ||||||
|  |  | ||||||
|  |     return out, logits | ||||||
							
								
								
									
										41
									
								
								scripts-search/DARTS1V-search-NASNet-space.sh
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										41
									
								
								scripts-search/DARTS1V-search-NASNet-space.sh
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,41 @@ | |||||||
|  | #!/bin/bash | ||||||
|  | # bash ./scripts-search/DARTS1V-search-NASNet-space.sh cifar10 -1 | ||||||
|  | echo script name: $0 | ||||||
|  | echo $# arguments | ||||||
|  | if [ "$#" -ne 2 ] ;then | ||||||
|  |   echo "Input illegal number of parameters " $# | ||||||
|  |   echo "Need 2 parameters for dataset, and seed" | ||||||
|  |   exit 1 | ||||||
|  | fi | ||||||
|  | if [ "$TORCH_HOME" = "" ]; then | ||||||
|  |   echo "Must set TORCH_HOME envoriment variable for data dir saving" | ||||||
|  |   exit 1 | ||||||
|  | else | ||||||
|  |   echo "TORCH_HOME : $TORCH_HOME" | ||||||
|  | fi | ||||||
|  |  | ||||||
|  | dataset=$1 | ||||||
|  | BN=1 | ||||||
|  | seed=$2 | ||||||
|  | channel=16 | ||||||
|  | num_cells=5 | ||||||
|  | max_nodes=4 | ||||||
|  | space=darts | ||||||
|  |  | ||||||
|  | if [ "$dataset" == "cifar10" ] || [ "$dataset" == "cifar100" ]; then | ||||||
|  |   data_path="$TORCH_HOME/cifar.python" | ||||||
|  | else | ||||||
|  |   data_path="$TORCH_HOME/cifar.python/ImageNet16" | ||||||
|  | fi | ||||||
|  |  | ||||||
|  | save_dir=./output/search-cell-${space}/DARTS-V1-${dataset}-BN${BN} | ||||||
|  |  | ||||||
|  | OMP_NUM_THREADS=4 python ./exps/algos/DARTS-V1.py \ | ||||||
|  | 	--save_dir ${save_dir} --max_nodes ${max_nodes} --channel ${channel} --num_cells ${num_cells} \ | ||||||
|  | 	--dataset ${dataset} --data_path ${data_path} \ | ||||||
|  | 	--search_space_name ${space} \ | ||||||
|  | 	--config_path configs/search-opts/DARTS-NASNet-CIFAR.config \ | ||||||
|  | 	--model_config configs/search-archs/GDAS-NASNet-CIFAR.config \ | ||||||
|  | 	--track_running_stats ${BN} \ | ||||||
|  | 	--arch_learning_rate 0.0003 --arch_weight_decay 0.001 \ | ||||||
|  | 	--workers 4 --print_freq 200 --rand_seed ${seed} | ||||||
		Reference in New Issue
	
	Block a user