|  |  |  | @@ -8,6 +8,10 @@ | 
		
	
		
			
				|  |  |  |  | # python ./exps/algos-v2/search-size.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo fbv2 --rand_seed 777 | 
		
	
		
			
				|  |  |  |  | # python ./exps/algos-v2/search-size.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo fbv2 --rand_seed 777 | 
		
	
		
			
				|  |  |  |  | # python ./exps/algos-v2/search-size.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo fbv2 --rand_seed 777 | 
		
	
		
			
				|  |  |  |  | #### | 
		
	
		
			
				|  |  |  |  | # python ./exps/algos-v2/search-size.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo tunas --arch_weight_decay 0 --rand_seed 777 --use_api 0 | 
		
	
		
			
				|  |  |  |  | # python ./exps/algos-v2/search-size.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo tunas --arch_weight_decay 0 --rand_seed 777 | 
		
	
		
			
				|  |  |  |  | # python ./exps/algos-v2/search-size.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo tunas --arch_weight_decay 0 --rand_seed 777 | 
		
	
		
			
				|  |  |  |  | ###################################################################################### | 
		
	
		
			
				|  |  |  |  | import os, sys, time, random, argparse | 
		
	
		
			
				|  |  |  |  | import numpy as np | 
		
	
	
		
			
				
					
					|  |  |  | @@ -26,7 +30,28 @@ from models       import get_cell_based_tiny_net, get_search_spaces | 
		
	
		
			
				|  |  |  |  | from nas_201_api  import NASBench301API as API | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer, epoch_str, print_freq, logger): | 
		
	
		
			
				|  |  |  |  | # Ad-hoc for TuNAS | 
		
	
		
			
				|  |  |  |  | class ExponentialMovingAverage(object): | 
		
	
		
			
				|  |  |  |  |   """Class that maintains an exponential moving average.""" | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  |   def __init__(self, momentum): | 
		
	
		
			
				|  |  |  |  |     self._numerator   = 0 | 
		
	
		
			
				|  |  |  |  |     self._denominator = 0 | 
		
	
		
			
				|  |  |  |  |     self._momentum    = momentum | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  |   def update(self, value): | 
		
	
		
			
				|  |  |  |  |     self._numerator = self._momentum * self._numerator + (1 - self._momentum) * value | 
		
	
		
			
				|  |  |  |  |     self._denominator = self._momentum * self._denominator + (1 - self._momentum) | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  |   @property | 
		
	
		
			
				|  |  |  |  |   def value(self): | 
		
	
		
			
				|  |  |  |  |     """Return the current value of the moving average""" | 
		
	
		
			
				|  |  |  |  |     return self._numerator / self._denominator | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | RL_BASELINE_EMA = ExponentialMovingAverage(0.95) | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer, algo, epoch_str, print_freq, logger): | 
		
	
		
			
				|  |  |  |  |   data_time, batch_time = AverageMeter(), AverageMeter() | 
		
	
		
			
				|  |  |  |  |   base_losses, base_top1, base_top5 = AverageMeter(), AverageMeter(), AverageMeter() | 
		
	
		
			
				|  |  |  |  |   arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter() | 
		
	
	
		
			
				
					
					|  |  |  | @@ -43,7 +68,7 @@ def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer | 
		
	
		
			
				|  |  |  |  |      | 
		
	
		
			
				|  |  |  |  |     # Update the weights | 
		
	
		
			
				|  |  |  |  |     network.zero_grad() | 
		
	
		
			
				|  |  |  |  |     _, logits = network(base_inputs) | 
		
	
		
			
				|  |  |  |  |     _, logits, _ = network(base_inputs) | 
		
	
		
			
				|  |  |  |  |     base_loss = criterion(logits, base_targets) | 
		
	
		
			
				|  |  |  |  |     base_loss.backward() | 
		
	
		
			
				|  |  |  |  |     w_optimizer.step() | 
		
	
	
		
			
				
					
					|  |  |  | @@ -55,12 +80,21 @@ def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  |     # update the architecture-weight | 
		
	
		
			
				|  |  |  |  |     network.zero_grad() | 
		
	
		
			
				|  |  |  |  |     _, logits = network(arch_inputs) | 
		
	
		
			
				|  |  |  |  |     arch_loss = criterion(logits, arch_targets) | 
		
	
		
			
				|  |  |  |  |     _, logits, log_probs = network(arch_inputs) | 
		
	
		
			
				|  |  |  |  |     arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5)) | 
		
	
		
			
				|  |  |  |  |     if algo == 'tunas': | 
		
	
		
			
				|  |  |  |  |       with torch.no_grad(): | 
		
	
		
			
				|  |  |  |  |         RL_BASELINE_EMA.update(arch_prec1.item()) | 
		
	
		
			
				|  |  |  |  |         rl_advantage = arch_prec1 - RL_BASELINE_EMA.value | 
		
	
		
			
				|  |  |  |  |       rl_log_prob = sum(log_probs) | 
		
	
		
			
				|  |  |  |  |       arch_loss = - rl_advantage * rl_log_prob | 
		
	
		
			
				|  |  |  |  |     elif algo == 'tas' or algo == 'fbv2': | 
		
	
		
			
				|  |  |  |  |       arch_loss = criterion(logits, arch_targets) | 
		
	
		
			
				|  |  |  |  |     else: | 
		
	
		
			
				|  |  |  |  |       raise ValueError('invalid algorightm name: {:}'.format(algo)) | 
		
	
		
			
				|  |  |  |  |     arch_loss.backward() | 
		
	
		
			
				|  |  |  |  |     a_optimizer.step() | 
		
	
		
			
				|  |  |  |  |     # record | 
		
	
		
			
				|  |  |  |  |     arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5)) | 
		
	
		
			
				|  |  |  |  |     arch_losses.update(arch_loss.item(),  arch_inputs.size(0)) | 
		
	
		
			
				|  |  |  |  |     arch_top1.update  (arch_prec1.item(), arch_inputs.size(0)) | 
		
	
		
			
				|  |  |  |  |     arch_top5.update  (arch_prec5.item(), arch_inputs.size(0)) | 
		
	
	
		
			
				
					
					|  |  |  | @@ -78,76 +112,6 @@ def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer | 
		
	
		
			
				|  |  |  |  |   return base_losses.avg, base_top1.avg, base_top5.avg, arch_losses.avg, arch_top1.avg, arch_top5.avg | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | def train_controller(xloader, network, criterion, optimizer, prev_baseline, epoch_str, print_freq, logger): | 
		
	
		
			
				|  |  |  |  |   # config. (containing some necessary arg) | 
		
	
		
			
				|  |  |  |  |   #   baseline: The baseline score (i.e. average val_acc) from the previous epoch | 
		
	
		
			
				|  |  |  |  |   data_time, batch_time = AverageMeter(), AverageMeter() | 
		
	
		
			
				|  |  |  |  |   GradnormMeter, LossMeter, ValAccMeter, EntropyMeter, BaselineMeter, RewardMeter, xend = AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), time.time() | 
		
	
		
			
				|  |  |  |  |    | 
		
	
		
			
				|  |  |  |  |   controller_num_aggregate = 20 | 
		
	
		
			
				|  |  |  |  |   controller_train_steps = 50 | 
		
	
		
			
				|  |  |  |  |   controller_bl_dec = 0.99 | 
		
	
		
			
				|  |  |  |  |   controller_entropy_weight = 0.0001 | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  |   network.eval() | 
		
	
		
			
				|  |  |  |  |   network.controller.train() | 
		
	
		
			
				|  |  |  |  |   network.controller.zero_grad() | 
		
	
		
			
				|  |  |  |  |   loader_iter = iter(xloader) | 
		
	
		
			
				|  |  |  |  |   for step in range(controller_train_steps * controller_num_aggregate): | 
		
	
		
			
				|  |  |  |  |     try: | 
		
	
		
			
				|  |  |  |  |       inputs, targets = next(loader_iter) | 
		
	
		
			
				|  |  |  |  |     except: | 
		
	
		
			
				|  |  |  |  |       loader_iter = iter(xloader) | 
		
	
		
			
				|  |  |  |  |       inputs, targets = next(loader_iter) | 
		
	
		
			
				|  |  |  |  |     inputs  = inputs.cuda(non_blocking=True) | 
		
	
		
			
				|  |  |  |  |     targets = targets.cuda(non_blocking=True) | 
		
	
		
			
				|  |  |  |  |     # measure data loading time | 
		
	
		
			
				|  |  |  |  |     data_time.update(time.time() - xend) | 
		
	
		
			
				|  |  |  |  |      | 
		
	
		
			
				|  |  |  |  |     log_prob, entropy, sampled_arch = network.controller() | 
		
	
		
			
				|  |  |  |  |     with torch.no_grad(): | 
		
	
		
			
				|  |  |  |  |       network.set_cal_mode('dynamic', sampled_arch) | 
		
	
		
			
				|  |  |  |  |       _, logits = network(inputs) | 
		
	
		
			
				|  |  |  |  |       val_top1, val_top5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5)) | 
		
	
		
			
				|  |  |  |  |       val_top1  = val_top1.view(-1) / 100 | 
		
	
		
			
				|  |  |  |  |     reward = val_top1 + controller_entropy_weight * entropy | 
		
	
		
			
				|  |  |  |  |     if prev_baseline is None: | 
		
	
		
			
				|  |  |  |  |       baseline = val_top1 | 
		
	
		
			
				|  |  |  |  |     else: | 
		
	
		
			
				|  |  |  |  |       baseline = prev_baseline - (1 - controller_bl_dec) * (prev_baseline - reward) | 
		
	
		
			
				|  |  |  |  |     | 
		
	
		
			
				|  |  |  |  |     loss = -1 * log_prob * (reward - baseline) | 
		
	
		
			
				|  |  |  |  |      | 
		
	
		
			
				|  |  |  |  |     # account | 
		
	
		
			
				|  |  |  |  |     RewardMeter.update(reward.item()) | 
		
	
		
			
				|  |  |  |  |     BaselineMeter.update(baseline.item()) | 
		
	
		
			
				|  |  |  |  |     ValAccMeter.update(val_top1.item()*100) | 
		
	
		
			
				|  |  |  |  |     LossMeter.update(loss.item()) | 
		
	
		
			
				|  |  |  |  |     EntropyMeter.update(entropy.item()) | 
		
	
		
			
				|  |  |  |  |    | 
		
	
		
			
				|  |  |  |  |     # Average gradient over controller_num_aggregate samples | 
		
	
		
			
				|  |  |  |  |     loss = loss / controller_num_aggregate | 
		
	
		
			
				|  |  |  |  |     loss.backward(retain_graph=True) | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  |     # measure elapsed time | 
		
	
		
			
				|  |  |  |  |     batch_time.update(time.time() - xend) | 
		
	
		
			
				|  |  |  |  |     xend = time.time() | 
		
	
		
			
				|  |  |  |  |     if (step+1) % controller_num_aggregate == 0: | 
		
	
		
			
				|  |  |  |  |       grad_norm = torch.nn.utils.clip_grad_norm_(network.controller.parameters(), 5.0) | 
		
	
		
			
				|  |  |  |  |       GradnormMeter.update(grad_norm) | 
		
	
		
			
				|  |  |  |  |       optimizer.step() | 
		
	
		
			
				|  |  |  |  |       network.controller.zero_grad() | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  |     if step % print_freq == 0: | 
		
	
		
			
				|  |  |  |  |       Sstr = '*Train-Controller* ' + time_string() + ' [{:}][{:03d}/{:03d}]'.format(epoch_str, step, controller_train_steps * controller_num_aggregate) | 
		
	
		
			
				|  |  |  |  |       Tstr = 'Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})'.format(batch_time=batch_time, data_time=data_time) | 
		
	
		
			
				|  |  |  |  |       Wstr = '[Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Reward {reward.val:.2f} ({reward.avg:.2f})] Baseline {basel.val:.2f} ({basel.avg:.2f})'.format(loss=LossMeter, top1=ValAccMeter, reward=RewardMeter, basel=BaselineMeter) | 
		
	
		
			
				|  |  |  |  |       Estr = 'Entropy={:.4f} ({:.4f})'.format(EntropyMeter.val, EntropyMeter.avg) | 
		
	
		
			
				|  |  |  |  |       logger.log(Sstr + ' ' + Tstr + ' ' + Wstr + ' ' + Estr) | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  |   return LossMeter.avg, ValAccMeter.avg, BaselineMeter.avg, RewardMeter.avg | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | def valid_func(xloader, network, criterion, logger): | 
		
	
		
			
				|  |  |  |  |   data_time, batch_time = AverageMeter(), AverageMeter() | 
		
	
		
			
				|  |  |  |  |   arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter() | 
		
	
	
		
			
				
					
					|  |  |  | @@ -159,7 +123,7 @@ def valid_func(xloader, network, criterion, logger): | 
		
	
		
			
				|  |  |  |  |       # measure data loading time | 
		
	
		
			
				|  |  |  |  |       data_time.update(time.time() - end) | 
		
	
		
			
				|  |  |  |  |       # prediction | 
		
	
		
			
				|  |  |  |  |       _, logits = network(arch_inputs.cuda(non_blocking=True)) | 
		
	
		
			
				|  |  |  |  |       _, logits, _ = network(arch_inputs.cuda(non_blocking=True)) | 
		
	
		
			
				|  |  |  |  |       arch_loss = criterion(logits, arch_targets) | 
		
	
		
			
				|  |  |  |  |       # record | 
		
	
		
			
				|  |  |  |  |       arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5)) | 
		
	
	
		
			
				
					
					|  |  |  | @@ -211,9 +175,9 @@ def main(xargs): | 
		
	
		
			
				|  |  |  |  |   params = count_parameters_in_MB(search_model) | 
		
	
		
			
				|  |  |  |  |   logger.log('The parameters of the search model = {:.2f} MB'.format(params)) | 
		
	
		
			
				|  |  |  |  |   logger.log('search-space : {:}'.format(search_space)) | 
		
	
		
			
				|  |  |  |  |   try: | 
		
	
		
			
				|  |  |  |  |   if bool(xargs.use_api): | 
		
	
		
			
				|  |  |  |  |     api = API(verbose=False) | 
		
	
		
			
				|  |  |  |  |   except: | 
		
	
		
			
				|  |  |  |  |   else: | 
		
	
		
			
				|  |  |  |  |     api = None | 
		
	
		
			
				|  |  |  |  |   logger.log('{:} create API = {:} done'.format(time_string(), api)) | 
		
	
		
			
				|  |  |  |  |  | 
		
	
	
		
			
				
					
					|  |  |  | @@ -250,7 +214,7 @@ def main(xargs): | 
		
	
		
			
				|  |  |  |  |       network.set_tau( xargs.tau_max - (xargs.tau_max-xargs.tau_min) * epoch / (total_epoch-1) ) | 
		
	
		
			
				|  |  |  |  |       logger.log('[RESET tau as : {:}]'.format(network.tau)) | 
		
	
		
			
				|  |  |  |  |     search_w_loss, search_w_top1, search_w_top5, search_a_loss, search_a_top1, search_a_top5 \ | 
		
	
		
			
				|  |  |  |  |                 = search_func(search_loader, network, criterion, w_scheduler, w_optimizer, a_optimizer, epoch_str, xargs.print_freq, logger) | 
		
	
		
			
				|  |  |  |  |                 = search_func(search_loader, network, criterion, w_scheduler, w_optimizer, a_optimizer, xargs.algo, epoch_str, xargs.print_freq, logger) | 
		
	
		
			
				|  |  |  |  |     search_time.update(time.time() - start_time) | 
		
	
		
			
				|  |  |  |  |     logger.log('[{:}] search [base] : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%, time-cost={:.1f} s'.format(epoch_str, search_w_loss, search_w_top1, search_w_top5, search_time.sum)) | 
		
	
		
			
				|  |  |  |  |     logger.log('[{:}] search [arch] : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, search_a_loss, search_a_top1, search_a_top5)) | 
		
	
	
		
			
				
					
					|  |  |  | @@ -305,8 +269,9 @@ if __name__ == '__main__': | 
		
	
		
			
				|  |  |  |  |   parser.add_argument('--data_path'   ,       type=str,   help='Path to dataset') | 
		
	
		
			
				|  |  |  |  |   parser.add_argument('--dataset'     ,       type=str,   choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.') | 
		
	
		
			
				|  |  |  |  |   parser.add_argument('--search_space',       type=str,   default='sss', choices=['sss'], help='The search space name.') | 
		
	
		
			
				|  |  |  |  |   parser.add_argument('--algo'        ,       type=str,   choices=['tas', 'fbv2', 'enas'], help='The search space name.') | 
		
	
		
			
				|  |  |  |  |   parser.add_argument('--algo'        ,       type=str,   choices=['tas', 'fbv2', 'tunas'], help='The search space name.') | 
		
	
		
			
				|  |  |  |  |   parser.add_argument('--genotype'    ,       type=str,   default='|nor_conv_3x3~0|+|nor_conv_3x3~0|nor_conv_3x3~1|+|skip_connect~0|nor_conv_3x3~1|nor_conv_3x3~2|', help='The genotype.') | 
		
	
		
			
				|  |  |  |  |   parser.add_argument('--use_api'     ,       type=int,   default=1, choices=[0,1], help='Whether use API or not (which will cost much memory).') | 
		
	
		
			
				|  |  |  |  |   # FOR GDAS | 
		
	
		
			
				|  |  |  |  |   parser.add_argument('--tau_min',            type=float, default=0.1,  help='The minimum tau for Gumbel Softmax.') | 
		
	
		
			
				|  |  |  |  |   parser.add_argument('--tau_max',            type=float, default=10,   help='The maximum tau for Gumbel Softmax.') | 
		
	
	
		
			
				
					
					|  |  |  |   |