Update TuNAS
This commit is contained in:
		| @@ -8,6 +8,10 @@ | ||||
| # python ./exps/algos-v2/search-size.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo fbv2 --rand_seed 777 | ||||
| # python ./exps/algos-v2/search-size.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo fbv2 --rand_seed 777 | ||||
| # python ./exps/algos-v2/search-size.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo fbv2 --rand_seed 777 | ||||
| #### | ||||
| # python ./exps/algos-v2/search-size.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo tunas --arch_weight_decay 0 --rand_seed 777 --use_api 0 | ||||
| # python ./exps/algos-v2/search-size.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo tunas --arch_weight_decay 0 --rand_seed 777 | ||||
| # python ./exps/algos-v2/search-size.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo tunas --arch_weight_decay 0 --rand_seed 777 | ||||
| ###################################################################################### | ||||
| import os, sys, time, random, argparse | ||||
| import numpy as np | ||||
| @@ -26,7 +30,28 @@ from models       import get_cell_based_tiny_net, get_search_spaces | ||||
| from nas_201_api  import NASBench301API as API | ||||
|  | ||||
|  | ||||
| def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer, epoch_str, print_freq, logger): | ||||
| # Ad-hoc for TuNAS | ||||
| class ExponentialMovingAverage(object): | ||||
|   """Class that maintains an exponential moving average.""" | ||||
|  | ||||
|   def __init__(self, momentum): | ||||
|     self._numerator   = 0 | ||||
|     self._denominator = 0 | ||||
|     self._momentum    = momentum | ||||
|  | ||||
|   def update(self, value): | ||||
|     self._numerator = self._momentum * self._numerator + (1 - self._momentum) * value | ||||
|     self._denominator = self._momentum * self._denominator + (1 - self._momentum) | ||||
|  | ||||
|   @property | ||||
|   def value(self): | ||||
|     """Return the current value of the moving average""" | ||||
|     return self._numerator / self._denominator | ||||
|  | ||||
| RL_BASELINE_EMA = ExponentialMovingAverage(0.95) | ||||
|  | ||||
|  | ||||
| def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer, algo, epoch_str, print_freq, logger): | ||||
|   data_time, batch_time = AverageMeter(), AverageMeter() | ||||
|   base_losses, base_top1, base_top5 = AverageMeter(), AverageMeter(), AverageMeter() | ||||
|   arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter() | ||||
| @@ -43,7 +68,7 @@ def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer | ||||
|      | ||||
|     # Update the weights | ||||
|     network.zero_grad() | ||||
|     _, logits = network(base_inputs) | ||||
|     _, logits, _ = network(base_inputs) | ||||
|     base_loss = criterion(logits, base_targets) | ||||
|     base_loss.backward() | ||||
|     w_optimizer.step() | ||||
| @@ -55,12 +80,21 @@ def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer | ||||
|  | ||||
|     # update the architecture-weight | ||||
|     network.zero_grad() | ||||
|     _, logits = network(arch_inputs) | ||||
|     arch_loss = criterion(logits, arch_targets) | ||||
|     _, logits, log_probs = network(arch_inputs) | ||||
|     arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5)) | ||||
|     if algo == 'tunas': | ||||
|       with torch.no_grad(): | ||||
|         RL_BASELINE_EMA.update(arch_prec1.item()) | ||||
|         rl_advantage = arch_prec1 - RL_BASELINE_EMA.value | ||||
|       rl_log_prob = sum(log_probs) | ||||
|       arch_loss = - rl_advantage * rl_log_prob | ||||
|     elif algo == 'tas' or algo == 'fbv2': | ||||
|       arch_loss = criterion(logits, arch_targets) | ||||
|     else: | ||||
|       raise ValueError('invalid algorightm name: {:}'.format(algo)) | ||||
|     arch_loss.backward() | ||||
|     a_optimizer.step() | ||||
|     # record | ||||
|     arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5)) | ||||
|     arch_losses.update(arch_loss.item(),  arch_inputs.size(0)) | ||||
|     arch_top1.update  (arch_prec1.item(), arch_inputs.size(0)) | ||||
|     arch_top5.update  (arch_prec5.item(), arch_inputs.size(0)) | ||||
| @@ -78,76 +112,6 @@ def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer | ||||
|   return base_losses.avg, base_top1.avg, base_top5.avg, arch_losses.avg, arch_top1.avg, arch_top5.avg | ||||
|  | ||||
|  | ||||
| def train_controller(xloader, network, criterion, optimizer, prev_baseline, epoch_str, print_freq, logger): | ||||
|   # config. (containing some necessary arg) | ||||
|   #   baseline: The baseline score (i.e. average val_acc) from the previous epoch | ||||
|   data_time, batch_time = AverageMeter(), AverageMeter() | ||||
|   GradnormMeter, LossMeter, ValAccMeter, EntropyMeter, BaselineMeter, RewardMeter, xend = AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), time.time() | ||||
|    | ||||
|   controller_num_aggregate = 20 | ||||
|   controller_train_steps = 50 | ||||
|   controller_bl_dec = 0.99 | ||||
|   controller_entropy_weight = 0.0001 | ||||
|  | ||||
|   network.eval() | ||||
|   network.controller.train() | ||||
|   network.controller.zero_grad() | ||||
|   loader_iter = iter(xloader) | ||||
|   for step in range(controller_train_steps * controller_num_aggregate): | ||||
|     try: | ||||
|       inputs, targets = next(loader_iter) | ||||
|     except: | ||||
|       loader_iter = iter(xloader) | ||||
|       inputs, targets = next(loader_iter) | ||||
|     inputs  = inputs.cuda(non_blocking=True) | ||||
|     targets = targets.cuda(non_blocking=True) | ||||
|     # measure data loading time | ||||
|     data_time.update(time.time() - xend) | ||||
|      | ||||
|     log_prob, entropy, sampled_arch = network.controller() | ||||
|     with torch.no_grad(): | ||||
|       network.set_cal_mode('dynamic', sampled_arch) | ||||
|       _, logits = network(inputs) | ||||
|       val_top1, val_top5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5)) | ||||
|       val_top1  = val_top1.view(-1) / 100 | ||||
|     reward = val_top1 + controller_entropy_weight * entropy | ||||
|     if prev_baseline is None: | ||||
|       baseline = val_top1 | ||||
|     else: | ||||
|       baseline = prev_baseline - (1 - controller_bl_dec) * (prev_baseline - reward) | ||||
|     | ||||
|     loss = -1 * log_prob * (reward - baseline) | ||||
|      | ||||
|     # account | ||||
|     RewardMeter.update(reward.item()) | ||||
|     BaselineMeter.update(baseline.item()) | ||||
|     ValAccMeter.update(val_top1.item()*100) | ||||
|     LossMeter.update(loss.item()) | ||||
|     EntropyMeter.update(entropy.item()) | ||||
|    | ||||
|     # Average gradient over controller_num_aggregate samples | ||||
|     loss = loss / controller_num_aggregate | ||||
|     loss.backward(retain_graph=True) | ||||
|  | ||||
|     # measure elapsed time | ||||
|     batch_time.update(time.time() - xend) | ||||
|     xend = time.time() | ||||
|     if (step+1) % controller_num_aggregate == 0: | ||||
|       grad_norm = torch.nn.utils.clip_grad_norm_(network.controller.parameters(), 5.0) | ||||
|       GradnormMeter.update(grad_norm) | ||||
|       optimizer.step() | ||||
|       network.controller.zero_grad() | ||||
|  | ||||
|     if step % print_freq == 0: | ||||
|       Sstr = '*Train-Controller* ' + time_string() + ' [{:}][{:03d}/{:03d}]'.format(epoch_str, step, controller_train_steps * controller_num_aggregate) | ||||
|       Tstr = 'Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})'.format(batch_time=batch_time, data_time=data_time) | ||||
|       Wstr = '[Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Reward {reward.val:.2f} ({reward.avg:.2f})] Baseline {basel.val:.2f} ({basel.avg:.2f})'.format(loss=LossMeter, top1=ValAccMeter, reward=RewardMeter, basel=BaselineMeter) | ||||
|       Estr = 'Entropy={:.4f} ({:.4f})'.format(EntropyMeter.val, EntropyMeter.avg) | ||||
|       logger.log(Sstr + ' ' + Tstr + ' ' + Wstr + ' ' + Estr) | ||||
|  | ||||
|   return LossMeter.avg, ValAccMeter.avg, BaselineMeter.avg, RewardMeter.avg | ||||
|  | ||||
|  | ||||
| def valid_func(xloader, network, criterion, logger): | ||||
|   data_time, batch_time = AverageMeter(), AverageMeter() | ||||
|   arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter() | ||||
| @@ -159,7 +123,7 @@ def valid_func(xloader, network, criterion, logger): | ||||
|       # measure data loading time | ||||
|       data_time.update(time.time() - end) | ||||
|       # prediction | ||||
|       _, logits = network(arch_inputs.cuda(non_blocking=True)) | ||||
|       _, logits, _ = network(arch_inputs.cuda(non_blocking=True)) | ||||
|       arch_loss = criterion(logits, arch_targets) | ||||
|       # record | ||||
|       arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5)) | ||||
| @@ -211,9 +175,9 @@ def main(xargs): | ||||
|   params = count_parameters_in_MB(search_model) | ||||
|   logger.log('The parameters of the search model = {:.2f} MB'.format(params)) | ||||
|   logger.log('search-space : {:}'.format(search_space)) | ||||
|   try: | ||||
|   if bool(xargs.use_api): | ||||
|     api = API(verbose=False) | ||||
|   except: | ||||
|   else: | ||||
|     api = None | ||||
|   logger.log('{:} create API = {:} done'.format(time_string(), api)) | ||||
|  | ||||
| @@ -250,7 +214,7 @@ def main(xargs): | ||||
|       network.set_tau( xargs.tau_max - (xargs.tau_max-xargs.tau_min) * epoch / (total_epoch-1) ) | ||||
|       logger.log('[RESET tau as : {:}]'.format(network.tau)) | ||||
|     search_w_loss, search_w_top1, search_w_top5, search_a_loss, search_a_top1, search_a_top5 \ | ||||
|                 = search_func(search_loader, network, criterion, w_scheduler, w_optimizer, a_optimizer, epoch_str, xargs.print_freq, logger) | ||||
|                 = search_func(search_loader, network, criterion, w_scheduler, w_optimizer, a_optimizer, xargs.algo, epoch_str, xargs.print_freq, logger) | ||||
|     search_time.update(time.time() - start_time) | ||||
|     logger.log('[{:}] search [base] : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%, time-cost={:.1f} s'.format(epoch_str, search_w_loss, search_w_top1, search_w_top5, search_time.sum)) | ||||
|     logger.log('[{:}] search [arch] : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, search_a_loss, search_a_top1, search_a_top5)) | ||||
| @@ -305,8 +269,9 @@ if __name__ == '__main__': | ||||
|   parser.add_argument('--data_path'   ,       type=str,   help='Path to dataset') | ||||
|   parser.add_argument('--dataset'     ,       type=str,   choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.') | ||||
|   parser.add_argument('--search_space',       type=str,   default='sss', choices=['sss'], help='The search space name.') | ||||
|   parser.add_argument('--algo'        ,       type=str,   choices=['tas', 'fbv2', 'enas'], help='The search space name.') | ||||
|   parser.add_argument('--algo'        ,       type=str,   choices=['tas', 'fbv2', 'tunas'], help='The search space name.') | ||||
|   parser.add_argument('--genotype'    ,       type=str,   default='|nor_conv_3x3~0|+|nor_conv_3x3~0|nor_conv_3x3~1|+|skip_connect~0|nor_conv_3x3~1|nor_conv_3x3~2|', help='The genotype.') | ||||
|   parser.add_argument('--use_api'     ,       type=int,   default=1, choices=[0,1], help='Whether use API or not (which will cost much memory).') | ||||
|   # FOR GDAS | ||||
|   parser.add_argument('--tau_min',            type=float, default=0.1,  help='The minimum tau for Gumbel Softmax.') | ||||
|   parser.add_argument('--tau_max',            type=float, default=10,   help='The maximum tau for Gumbel Softmax.') | ||||
|   | ||||
		Reference in New Issue
	
	Block a user