Upgrade NAS-Bench-201 to APIv1.3/FILEv1.1
This commit is contained in:
		| @@ -1,36 +1,84 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08 # | ||||
| ######################################################## | ||||
| # python exps/NAS-Bench-201/test-weights.py --api_path $HOME/.torch/NAS-Bench-201-v1_0-e61699.pth | ||||
| ######################################################## | ||||
| ############################################################################################### | ||||
| # Before run these commands, the files must be properly put. | ||||
| # python exps/NAS-Bench-201/test-weights.py --base_path $HOME/.torch/NAS-Bench-201-v1_0-e61699 | ||||
| # python exps/NAS-Bench-201/test-weights.py --base_path $HOME/.torch/NAS-Bench-201-v1_1-096897 | ||||
| ############################################################################################### | ||||
| import os, sys, time, glob, random, argparse | ||||
| import numpy as np | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from pathlib import Path | ||||
| from tqdm import tqdm | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
| from procedures   import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler | ||||
| from nas_201_api  import NASBench201API as API | ||||
| from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler | ||||
| from nas_201_api import NASBench201API as API | ||||
| from log_utils import time_string | ||||
| from models import get_cell_based_tiny_net | ||||
| from utils import weight_watcher | ||||
|  | ||||
|  | ||||
| def main(meta_file, weight_dir, save_dir): | ||||
|   import pdb; | ||||
|   pdb.set_trace() | ||||
| def get_cor(A, B): | ||||
|   return float(np.corrcoef(A, B)[0,1]) | ||||
|  | ||||
|  | ||||
| def evaluate(api, weight_dir, data: str, use_12epochs_result: bool, valid_or_test: bool): | ||||
|   norms, accs = [], [] | ||||
|   for idx in tqdm(range(len(api))): | ||||
|     info = api.get_more_info(idx, data, use_12epochs_result=use_12epochs_result, is_random=False) | ||||
|     if valid_or_test: | ||||
|       accs.append(info['valid-accuracy']) | ||||
|     else: | ||||
|       accs.append(info['test-accuracy']) | ||||
|     config = api.get_net_config(idx, data) | ||||
|     net = get_cell_based_tiny_net(config) | ||||
|     api.reload(weight_dir, idx) | ||||
|     params = api.get_net_param(idx, data, None) | ||||
|     cur_norms = [] | ||||
|     for seed, param in params.items(): | ||||
|       net.load_state_dict(param) | ||||
|       _, summary = weight_watcher.analyze(net, alphas=False) | ||||
|       cur_norms.append( summary['lognorm'] ) | ||||
|     norms.append( float(np.mean(cur_norms)) ) | ||||
|     api.clear_params(idx, use_12epochs_result) | ||||
|   correlation = get_cor(norms, accs) | ||||
|   print('For {:} with {:} epochs on {:} : the correlation is {:}'.format(data, 12 if use_12epochs_result else 200, 'valid' if valid_or_test else 'test', correlation)) | ||||
|  | ||||
|  | ||||
| def main(meta_file: str, weight_dir, save_dir): | ||||
|   api = API(meta_file) | ||||
|   datasets = ['cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120'] | ||||
|   print(time_string() + ' ' + '='*50) | ||||
|   for data in datasets: | ||||
|     nums = api.statistics(data, True) | ||||
|     total = sum([k*v for k, v in nums.items()]) | ||||
|     print('Using 012 epochs, trained on {:20s} : {:} trials in total ({:}).'.format(data, total, nums)) | ||||
|   print(time_string() + ' ' + '='*50) | ||||
|   for data in datasets: | ||||
|     nums = api.statistics(data, False) | ||||
|     total = sum([k*v for k, v in nums.items()]) | ||||
|     print('Using 200 epochs, trained on {:20s} : {:} trials in total ({:}).'.format(data, total, nums)) | ||||
|   print(time_string() + ' ' + '='*50) | ||||
|  | ||||
|   evaluate(api, weight_dir, 'cifar10-valid', False, True) | ||||
|    | ||||
|   print('{:} finish this test.'.format(time_string())) | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|   parser = argparse.ArgumentParser("Analysis of NAS-Bench-201") | ||||
|   parser.add_argument('--save_dir',   type=str, default='./output/search-cell-nas-bench-201/visuals', help='The base-name of folder to save checkpoints and log.') | ||||
|   parser.add_argument('--api_path',   type=str, default=None, help='The path to the NAS-Bench-201 benchmark file.') | ||||
|   parser.add_argument('--weight_dir', type=str, default=None, help='The directory path to the weights of every NAS-Bench-201 architecture.') | ||||
|   parser.add_argument('--base_path',  type=str, default=None, help='The path to the NAS-Bench-201 benchmark file and weight dir.') | ||||
|   args = parser.parse_args() | ||||
|  | ||||
|   save_dir = Path(args.save_dir) | ||||
|   save_dir.mkdir(parents=True, exist_ok=True) | ||||
|   meta_file = Path(args.api_path) | ||||
|   weight_dir = Path(args.weight_dir) | ||||
|   meta_file = Path(args.base_path + '.pth') | ||||
|   weight_dir = Path(args.base_path + '-archive') | ||||
|   assert meta_file.exists(), 'invalid path for api : {:}'.format(meta_file) | ||||
|   assert weight_dir.exists() and weight_dir.is_dir(), 'invalid path for weight dir : {:}'.format(weight_dir) | ||||
|  | ||||
|   main(meta_file, weight_dir, save_dir) | ||||
|   main(str(meta_file), weight_dir, save_dir) | ||||
|  | ||||
|   | ||||
| @@ -50,10 +50,11 @@ def config2structure_func(max_nodes): | ||||
|  | ||||
| class MyWorker(Worker): | ||||
|  | ||||
|   def __init__(self, *args, convert_func=None, nas_bench=None, time_budget=None, **kwargs): | ||||
|   def __init__(self, *args, convert_func=None, dataname=None, nas_bench=None, time_budget=None, **kwargs): | ||||
|     super().__init__(*args, **kwargs) | ||||
|     self.convert_func   = convert_func | ||||
|     self.nas_bench      = nas_bench | ||||
|     self._dataname      = dataname | ||||
|     self._nas_bench     = nas_bench | ||||
|     self.time_budget    = time_budget | ||||
|     self.seen_archs     = [] | ||||
|     self.sim_cost_time  = 0 | ||||
| @@ -64,7 +65,7 @@ class MyWorker(Worker): | ||||
|     assert len(self.seen_archs) > 0 | ||||
|     best_index, best_acc = -1, None | ||||
|     for arch_index in self.seen_archs: | ||||
|       info = self.nas_bench.get_more_info(arch_index, 'cifar10-valid', None, True) | ||||
|       info = self._nas_bench.get_more_info(arch_index, self._dataname, None, True, True) | ||||
|       vacc = info['valid-accuracy'] | ||||
|       if best_acc is None or best_acc < vacc: | ||||
|         best_acc = vacc | ||||
| @@ -75,8 +76,8 @@ class MyWorker(Worker): | ||||
|   def compute(self, config, budget, **kwargs): | ||||
|     start_time = time.time() | ||||
|     structure  = self.convert_func( config ) | ||||
|     arch_index = self.nas_bench.query_index_by_arch( structure ) | ||||
|     info       = self.nas_bench.get_more_info(arch_index, 'cifar10-valid', None, True) | ||||
|     arch_index = self._nas_bench.query_index_by_arch( structure ) | ||||
|     info       = self._nas_bench.get_more_info(arch_index, self._dataname, None, True, True) | ||||
|     cur_time   = info['train-all-time'] + info['valid-per-time'] | ||||
|     cur_vacc   = info['valid-accuracy'] | ||||
|     self.real_cost_time += (time.time() - start_time) | ||||
| @@ -106,7 +107,10 @@ def main(xargs, nas_bench): | ||||
|   prepare_seed(xargs.rand_seed) | ||||
|   logger = prepare_logger(args) | ||||
|  | ||||
|   assert xargs.dataset == 'cifar10', 'currently only support CIFAR-10' | ||||
|   if xargs.dataset == 'cifar10': | ||||
|     dataname = 'cifar10-valid' | ||||
|   else: | ||||
|     dataname = xargs.dataset | ||||
|   if xargs.data_path is not None: | ||||
|     train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1) | ||||
|     split_Fpath = 'configs/nas-benchmark/cifar-split.txt' | ||||
| @@ -148,7 +152,7 @@ def main(xargs, nas_bench): | ||||
|   #logger.log('{:} Create NAS-BENCH-API DONE'.format(time_string())) | ||||
|   workers = [] | ||||
|   for i in range(num_workers): | ||||
|     w = MyWorker(nameserver=ns_host, nameserver_port=ns_port, convert_func=config2structure, nas_bench=nas_bench, time_budget=xargs.time_budget, run_id=hb_run_id, id=i) | ||||
|     w = MyWorker(nameserver=ns_host, nameserver_port=ns_port, convert_func=config2structure, dataname=dataname, nas_bench=nas_bench, time_budget=xargs.time_budget, run_id=hb_run_id, id=i) | ||||
|     w.run(background=True) | ||||
|     workers.append(w) | ||||
|  | ||||
|   | ||||
| @@ -28,7 +28,10 @@ def main(xargs, nas_bench): | ||||
|   prepare_seed(xargs.rand_seed) | ||||
|   logger = prepare_logger(args) | ||||
|  | ||||
|   assert xargs.dataset == 'cifar10', 'currently only support CIFAR-10' | ||||
|   if xargs.dataset == 'cifar10': | ||||
|     dataname = 'cifar10-valid' | ||||
|   else: | ||||
|     dataname = xargs.dataset | ||||
|   if xargs.data_path is not None: | ||||
|     train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1) | ||||
|     split_Fpath = 'configs/nas-benchmark/cifar-split.txt' | ||||
| @@ -62,7 +65,7 @@ def main(xargs, nas_bench): | ||||
|   #for idx in range(xargs.random_num): | ||||
|   while total_time_cost < xargs.time_budget: | ||||
|     arch = random_arch() | ||||
|     accuracy, cost_time = train_and_eval(arch, nas_bench, extra_info) | ||||
|     accuracy, cost_time = train_and_eval(arch, nas_bench, extra_info, dataname) | ||||
|     if total_time_cost + cost_time > xargs.time_budget: break | ||||
|     else: total_time_cost += cost_time | ||||
|     history.append(arch) | ||||
|   | ||||
| @@ -33,19 +33,21 @@ class Model(object): | ||||
|  | ||||
| # This function is to mimic the training and evaluatinig procedure for a single architecture `arch`. | ||||
| # The time_cost is calculated as the total training time for a few (e.g., 12 epochs) plus the evaluation time for one epoch. | ||||
| # For use_converged_LR = True, the architecture is trained for 12 epochs, with LR being decaded from 0.1 to 0. | ||||
| # For use_012_epoch_training = True, the architecture is trained for 12 epochs, with LR being decaded from 0.1 to 0. | ||||
| #       In this case, the LR schedular is converged. | ||||
| # For use_converged_LR = False, the architecture is planed to be trained for 200 epochs, but we early stop its procedure. | ||||
| # For use_012_epoch_training = False, the architecture is planed to be trained for 200 epochs, but we early stop its procedure. | ||||
| #        | ||||
| def train_and_eval(arch, nas_bench, extra_info, dataname='cifar10-valid', use_converged_LR=True): | ||||
|   if use_converged_LR and nas_bench is not None: | ||||
| def train_and_eval(arch, nas_bench, extra_info, dataname='cifar10-valid', use_012_epoch_training=True): | ||||
|  | ||||
|   if use_012_epoch_training and nas_bench is not None: | ||||
|     arch_index = nas_bench.query_index_by_arch( arch ) | ||||
|     assert arch_index >= 0, 'can not find this arch : {:}'.format(arch) | ||||
|     info = nas_bench.get_more_info(arch_index, dataname, None, True) | ||||
|     valid_acc, time_cost = info['valid-accuracy'], info['train-all-time'] + info['valid-per-time'] | ||||
|     #_, valid_acc = info.get_metrics('cifar10-valid', 'x-valid' , 25, True) # use the validation accuracy after 25 training epochs | ||||
|   elif not use_converged_LR and nas_bench is not None: | ||||
|     # Please use `use_converged_LR=False` for cifar10 only. | ||||
|   elif not use_012_epoch_training and nas_bench is not None: | ||||
|     # Please contact me if you want to use the following logic, because it has some potential issues. | ||||
|     # Please use `use_012_epoch_training=False` for cifar10 only. | ||||
|     # It did return values for cifar100 and ImageNet16-120, but it has some potential issues. (Please email me for more details) | ||||
|     arch_index, nepoch = nas_bench.query_index_by_arch( arch ), 25 | ||||
|     assert arch_index >= 0, 'can not find this arch : {:}'.format(arch) | ||||
| @@ -64,7 +66,7 @@ def train_and_eval(arch, nas_bench, extra_info, dataname='cifar10-valid', use_co | ||||
|     try: | ||||
|       valid_acc, time_cost = info['valid-accuracy'], estimated_train_cost + estimated_valid_cost | ||||
|     except: | ||||
|       valid_acc, time_cost = info['est-valid-accuracy'], estimated_train_cost + estimated_valid_cost | ||||
|       valid_acc, time_cost = info['valtest-accuracy'], estimated_train_cost + estimated_valid_cost | ||||
|   else: | ||||
|     # train a model from scratch. | ||||
|     raise ValueError('NOT IMPLEMENT YET') | ||||
| @@ -127,7 +129,7 @@ def regularized_evolution(cycles, population_size, sample_size, time_budget, ran | ||||
|   while len(population) < population_size: | ||||
|     model = Model() | ||||
|     model.arch = random_arch() | ||||
|     model.accuracy, time_cost = train_and_eval(model.arch, nas_bench, extra_info) | ||||
|     model.accuracy, time_cost = train_and_eval(model.arch, nas_bench, extra_info, dataname) | ||||
|     population.append(model) | ||||
|     history.append(model) | ||||
|     total_time_cost += time_cost | ||||
| @@ -152,7 +154,7 @@ def regularized_evolution(cycles, population_size, sample_size, time_budget, ran | ||||
|     child = Model() | ||||
|     child.arch = mutate_arch(parent.arch) | ||||
|     total_time_cost += time.time() - start_time | ||||
|     child.accuracy, time_cost = train_and_eval(child.arch, nas_bench, extra_info) | ||||
|     child.accuracy, time_cost = train_and_eval(child.arch, nas_bench, extra_info, dataname) | ||||
|     if total_time_cost + time_cost > time_budget: # return | ||||
|       return history, total_time_cost | ||||
|     else: | ||||
| @@ -174,7 +176,6 @@ def main(xargs, nas_bench): | ||||
|   prepare_seed(xargs.rand_seed) | ||||
|   logger = prepare_logger(args) | ||||
|  | ||||
|   assert xargs.dataset == 'cifar10', 'currently only support CIFAR-10' | ||||
|   if xargs.dataset == 'cifar10': | ||||
|     dataname = 'cifar10-valid' | ||||
|   else: | ||||
|   | ||||
| @@ -98,7 +98,10 @@ def main(xargs, nas_bench): | ||||
|   prepare_seed(xargs.rand_seed) | ||||
|   logger = prepare_logger(args) | ||||
|  | ||||
|   assert xargs.dataset == 'cifar10', 'currently only support CIFAR-10' | ||||
|   if xargs.dataset == 'cifar10': | ||||
|     dataname = 'cifar10-valid' | ||||
|   else: | ||||
|     dataname = xargs.dataset | ||||
|   if xargs.data_path is not None: | ||||
|     train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1) | ||||
|     split_Fpath = 'configs/nas-benchmark/cifar-split.txt' | ||||
| @@ -148,7 +151,7 @@ def main(xargs, nas_bench): | ||||
|     start_time = time.time() | ||||
|     log_prob, action = select_action( policy ) | ||||
|     arch   = policy.generate_arch( action ) | ||||
|     reward, cost_time = train_and_eval(arch, nas_bench, extra_info) | ||||
|     reward, cost_time = train_and_eval(arch, nas_bench, extra_info, dataname) | ||||
|     trace.append( (reward, arch) ) | ||||
|     # accumulate time | ||||
|     if total_costs + cost_time < xargs.time_budget: | ||||
|   | ||||
		Reference in New Issue
	
	Block a user