xautodl/exps/NAS-Bench-201/test-weights.py

85 lines
3.7 KiB
Python

#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08 #
###############################################################################################
# Before run these commands, the files must be properly put.
# python exps/NAS-Bench-201/test-weights.py --base_path $HOME/.torch/NAS-Bench-201-v1_0-e61699
# python exps/NAS-Bench-201/test-weights.py --base_path $HOME/.torch/NAS-Bench-201-v1_1-096897
###############################################################################################
import os, sys, time, glob, random, argparse
import numpy as np
import torch
import torch.nn as nn
from pathlib import Path
from tqdm import tqdm
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler
from nas_201_api import NASBench201API as API
from log_utils import time_string
from models import get_cell_based_tiny_net
from utils import weight_watcher
def get_cor(A, B):
return float(np.corrcoef(A, B)[0,1])
def evaluate(api, weight_dir, data: str, use_12epochs_result: bool, valid_or_test: bool):
norms, accs = [], []
for idx in tqdm(range(len(api))):
info = api.get_more_info(idx, data, use_12epochs_result=use_12epochs_result, is_random=False)
if valid_or_test:
accs.append(info['valid-accuracy'])
else:
accs.append(info['test-accuracy'])
config = api.get_net_config(idx, data)
net = get_cell_based_tiny_net(config)
api.reload(weight_dir, idx)
params = api.get_net_param(idx, data, None)
cur_norms = []
for seed, param in params.items():
net.load_state_dict(param)
_, summary = weight_watcher.analyze(net, alphas=False)
cur_norms.append( summary['lognorm'] )
norms.append( float(np.mean(cur_norms)) )
api.clear_params(idx, use_12epochs_result)
correlation = get_cor(norms, accs)
print('For {:} with {:} epochs on {:} : the correlation is {:}'.format(data, 12 if use_12epochs_result else 200, 'valid' if valid_or_test else 'test', correlation))
def main(meta_file: str, weight_dir, save_dir):
api = API(meta_file)
datasets = ['cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120']
print(time_string() + ' ' + '='*50)
for data in datasets:
nums = api.statistics(data, True)
total = sum([k*v for k, v in nums.items()])
print('Using 012 epochs, trained on {:20s} : {:} trials in total ({:}).'.format(data, total, nums))
print(time_string() + ' ' + '='*50)
for data in datasets:
nums = api.statistics(data, False)
total = sum([k*v for k, v in nums.items()])
print('Using 200 epochs, trained on {:20s} : {:} trials in total ({:}).'.format(data, total, nums))
print(time_string() + ' ' + '='*50)
evaluate(api, weight_dir, 'cifar10-valid', False, True)
print('{:} finish this test.'.format(time_string()))
if __name__ == '__main__':
parser = argparse.ArgumentParser("Analysis of NAS-Bench-201")
parser.add_argument('--save_dir', type=str, default='./output/search-cell-nas-bench-201/visuals', help='The base-name of folder to save checkpoints and log.')
parser.add_argument('--base_path', type=str, default=None, help='The path to the NAS-Bench-201 benchmark file and weight dir.')
args = parser.parse_args()
save_dir = Path(args.save_dir)
save_dir.mkdir(parents=True, exist_ok=True)
meta_file = Path(args.base_path + '.pth')
weight_dir = Path(args.base_path + '-archive')
assert meta_file.exists(), 'invalid path for api : {:}'.format(meta_file)
assert weight_dir.exists() and weight_dir.is_dir(), 'invalid path for weight dir : {:}'.format(weight_dir)
main(str(meta_file), weight_dir, save_dir)