233 lines
7.9 KiB
Python
233 lines
7.9 KiB
Python
###############################################################
|
|
# NATS-Bench (arxiv.org/pdf/2009.00437.pdf), IEEE TPAMI 2021 #
|
|
# The code to draw Figure 6 in our paper. #
|
|
###############################################################
|
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.06 #
|
|
###############################################################
|
|
# Usage: python exps/NATS-Bench/draw-fig8.py #
|
|
###############################################################
|
|
import os, gc, sys, time, torch, argparse
|
|
import numpy as np
|
|
from typing import List, Text, Dict, Any
|
|
from shutil import copyfile
|
|
from collections import defaultdict, OrderedDict
|
|
from copy import deepcopy
|
|
from pathlib import Path
|
|
import matplotlib
|
|
import seaborn as sns
|
|
|
|
matplotlib.use("agg")
|
|
import matplotlib.pyplot as plt
|
|
import matplotlib.ticker as ticker
|
|
|
|
from xautodl.config_utils import dict2config, load_config
|
|
from xautodl.log_utils import time_string
|
|
from nats_bench import create
|
|
|
|
|
|
plt.rcParams.update(
|
|
{"text.usetex": True, "font.family": "sans-serif", "font.sans-serif": ["Helvetica"]}
|
|
)
|
|
## for Palatino and other serif fonts use:
|
|
plt.rcParams.update(
|
|
{
|
|
"text.usetex": True,
|
|
"font.family": "serif",
|
|
"font.serif": ["Palatino"],
|
|
}
|
|
)
|
|
|
|
|
|
def fetch_data(root_dir="./output/search", search_space="tss", dataset=None):
|
|
ss_dir = "{:}-{:}".format(root_dir, search_space)
|
|
alg2all = OrderedDict()
|
|
# alg2name['REINFORCE'] = 'REINFORCE-0.01'
|
|
# alg2name['RANDOM'] = 'RANDOM'
|
|
# alg2name['BOHB'] = 'BOHB'
|
|
if search_space == "tss":
|
|
hp = "$\mathcal{H}^{1}$"
|
|
if dataset == "cifar10":
|
|
suffixes = ["-T1200000", "-T1200000-FULL"]
|
|
elif search_space == "sss":
|
|
hp = "$\mathcal{H}^{2}$"
|
|
if dataset == "cifar10":
|
|
suffixes = ["-T200000", "-T200000-FULL"]
|
|
else:
|
|
raise ValueError("Unkonwn search space: {:}".format(search_space))
|
|
|
|
alg2all[r"REA ($\mathcal{H}^{0}$)"] = dict(
|
|
path=os.path.join(ss_dir, dataset + suffixes[0], "R-EA-SS3", "results.pth"),
|
|
color="b",
|
|
linestyle="-",
|
|
)
|
|
alg2all[r"REA ({:})".format(hp)] = dict(
|
|
path=os.path.join(ss_dir, dataset + suffixes[1], "R-EA-SS3", "results.pth"),
|
|
color="b",
|
|
linestyle="--",
|
|
)
|
|
|
|
for alg, xdata in alg2all.items():
|
|
data = torch.load(xdata["path"])
|
|
for index, info in data.items():
|
|
info["time_w_arch"] = [
|
|
(x, y) for x, y in zip(info["all_total_times"], info["all_archs"])
|
|
]
|
|
for j, arch in enumerate(info["all_archs"]):
|
|
assert arch != -1, "invalid arch from {:} {:} {:} ({:}, {:})".format(
|
|
alg, search_space, dataset, index, j
|
|
)
|
|
xdata["data"] = data
|
|
return alg2all
|
|
|
|
|
|
def query_performance(api, data, dataset, ticket):
|
|
results, is_size_space = [], api.search_space_name == "size"
|
|
for i, info in data.items():
|
|
time_w_arch = sorted(info["time_w_arch"], key=lambda x: abs(x[0] - ticket))
|
|
time_a, arch_a = time_w_arch[0]
|
|
time_b, arch_b = time_w_arch[1]
|
|
info_a = api.get_more_info(
|
|
arch_a, dataset=dataset, hp=90 if is_size_space else 200, is_random=False
|
|
)
|
|
info_b = api.get_more_info(
|
|
arch_b, dataset=dataset, hp=90 if is_size_space else 200, is_random=False
|
|
)
|
|
accuracy_a, accuracy_b = info_a["test-accuracy"], info_b["test-accuracy"]
|
|
interplate = (time_b - ticket) / (time_b - time_a) * accuracy_a + (
|
|
ticket - time_a
|
|
) / (time_b - time_a) * accuracy_b
|
|
results.append(interplate)
|
|
# return sum(results) / len(results)
|
|
return np.mean(results), np.std(results)
|
|
|
|
|
|
y_min_s = {
|
|
("cifar10", "tss"): 91,
|
|
("cifar10", "sss"): 91,
|
|
("cifar100", "tss"): 65,
|
|
("cifar100", "sss"): 65,
|
|
("ImageNet16-120", "tss"): 36,
|
|
("ImageNet16-120", "sss"): 40,
|
|
}
|
|
|
|
y_max_s = {
|
|
("cifar10", "tss"): 94.5,
|
|
("cifar10", "sss"): 93.5,
|
|
("cifar100", "tss"): 72.5,
|
|
("cifar100", "sss"): 70.5,
|
|
("ImageNet16-120", "tss"): 46,
|
|
("ImageNet16-120", "sss"): 46,
|
|
}
|
|
|
|
x_axis_s = {
|
|
("cifar10", "tss"): 1200000,
|
|
("cifar10", "sss"): 200000,
|
|
("cifar100", "tss"): 400,
|
|
("cifar100", "sss"): 400,
|
|
("ImageNet16-120", "tss"): 1200,
|
|
("ImageNet16-120", "sss"): 600,
|
|
}
|
|
|
|
name2label = {
|
|
"cifar10": "CIFAR-10",
|
|
"cifar100": "CIFAR-100",
|
|
"ImageNet16-120": "ImageNet-16-120",
|
|
}
|
|
|
|
spaces2latex = {
|
|
"tss": r"$\mathcal{S}_{t}$",
|
|
"sss": r"$\mathcal{S}_{s}$",
|
|
}
|
|
|
|
|
|
# FuncFormatter can be used as a decorator
|
|
@ticker.FuncFormatter
|
|
def major_formatter(x, pos):
|
|
if x == 0:
|
|
return "0"
|
|
else:
|
|
return "{:.2f}e5".format(x / 1e5)
|
|
|
|
|
|
def visualize_curve(api_dict, vis_save_dir):
|
|
vis_save_dir = vis_save_dir.resolve()
|
|
vis_save_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
dpi, width, height = 250, 5000, 2000
|
|
figsize = width / float(dpi), height / float(dpi)
|
|
LabelSize, LegendFontsize = 28, 28
|
|
|
|
def sub_plot_fn(ax, search_space, dataset):
|
|
max_time = x_axis_s[(dataset, search_space)]
|
|
alg2data = fetch_data(search_space=search_space, dataset=dataset)
|
|
alg2accuracies = OrderedDict()
|
|
total_tickets = 200
|
|
time_tickets = [
|
|
float(i) / total_tickets * int(max_time) for i in range(total_tickets)
|
|
]
|
|
ax.set_xlim(0, x_axis_s[(dataset, search_space)])
|
|
ax.set_ylim(y_min_s[(dataset, search_space)], y_max_s[(dataset, search_space)])
|
|
for tick in ax.get_xticklabels():
|
|
tick.set_rotation(25)
|
|
tick.set_fontsize(LabelSize - 6)
|
|
for tick in ax.get_yticklabels():
|
|
tick.set_fontsize(LabelSize - 6)
|
|
ax.xaxis.set_major_formatter(major_formatter)
|
|
for idx, (alg, xdata) in enumerate(alg2data.items()):
|
|
accuracies = []
|
|
for ticket in time_tickets:
|
|
# import pdb; pdb.set_trace()
|
|
accuracy, accuracy_std = query_performance(
|
|
api_dict[search_space], xdata["data"], dataset, ticket
|
|
)
|
|
accuracies.append(accuracy)
|
|
# print('{:} plot alg : {:10s}, final accuracy = {:.2f}$\pm${:.2f}'.format(time_string(), alg, accuracy, accuracy_std))
|
|
print(
|
|
"{:} plot alg : {:10s} on {:}".format(time_string(), alg, search_space)
|
|
)
|
|
alg2accuracies[alg] = accuracies
|
|
ax.plot(
|
|
time_tickets,
|
|
accuracies,
|
|
c=xdata["color"],
|
|
linestyle=xdata["linestyle"],
|
|
label="{:}".format(alg),
|
|
)
|
|
ax.set_xlabel("Estimated wall-clock time", fontsize=LabelSize)
|
|
ax.set_ylabel("Test accuracy", fontsize=LabelSize)
|
|
ax.set_title(
|
|
r"Results on {:} over {:}".format(
|
|
name2label[dataset], spaces2latex[search_space]
|
|
),
|
|
fontsize=LabelSize,
|
|
)
|
|
ax.legend(loc=4, fontsize=LegendFontsize)
|
|
|
|
fig, axs = plt.subplots(1, 2, figsize=figsize)
|
|
sub_plot_fn(axs[0], "tss", "cifar10")
|
|
sub_plot_fn(axs[1], "sss", "cifar10")
|
|
save_path = (vis_save_dir / "full-curve.png").resolve()
|
|
fig.savefig(save_path, dpi=dpi, bbox_inches="tight", format="png")
|
|
print("{:} save into {:}".format(time_string(), save_path))
|
|
plt.close("all")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(
|
|
description="NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size",
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
|
)
|
|
parser.add_argument(
|
|
"--save_dir",
|
|
type=str,
|
|
default="output/vis-nas-bench/nas-algos-vs-h",
|
|
help="Folder to save checkpoints and log.",
|
|
)
|
|
args = parser.parse_args()
|
|
|
|
save_dir = Path(args.save_dir)
|
|
|
|
api_tss = create(None, "tss", fast_mode=True, verbose=False)
|
|
api_sss = create(None, "sss", fast_mode=True, verbose=False)
|
|
visualize_curve(dict(tss=api_tss, sss=api_sss), save_dir)
|