262 lines
		
	
	
		
			9.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			262 lines
		
	
	
		
			9.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#####################################################
 | 
						|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.02 #
 | 
						|
#####################################################
 | 
						|
# python exps/trading/baselines.py --alg MLP        #
 | 
						|
# python exps/trading/baselines.py --alg GRU        #
 | 
						|
# python exps/trading/baselines.py --alg LSTM       #
 | 
						|
# python exps/trading/baselines.py --alg ALSTM      #
 | 
						|
# python exps/trading/baselines.py --alg NAIVE-V1   #
 | 
						|
# python exps/trading/baselines.py --alg NAIVE-V2   #
 | 
						|
#                                                   #
 | 
						|
# python exps/trading/baselines.py --alg SFM        #
 | 
						|
# python exps/trading/baselines.py --alg XGBoost    #
 | 
						|
# python exps/trading/baselines.py --alg LightGBM   #
 | 
						|
# python exps/trading/baselines.py --alg DoubleE    #
 | 
						|
# python exps/trading/baselines.py --alg TabNet     #
 | 
						|
#                                                   #############################
 | 
						|
# python exps/trading/baselines.py --alg Transformer
 | 
						|
# python exps/trading/baselines.py --alg TSF
 | 
						|
# python exps/trading/baselines.py --alg TSF-2x24-drop0_0 --market csi300
 | 
						|
# python exps/trading/baselines.py --alg TSF-6x32-drop0_0 --market csi300
 | 
						|
#################################################################################
 | 
						|
import sys
 | 
						|
import copy
 | 
						|
from datetime import datetime
 | 
						|
import argparse
 | 
						|
from collections import OrderedDict
 | 
						|
from pprint import pprint
 | 
						|
import ruamel.yaml as yaml
 | 
						|
 | 
						|
from xautodl.config_utils import arg_str2bool
 | 
						|
from xautodl.procedures.q_exps import update_gpu
 | 
						|
from xautodl.procedures.q_exps import update_market
 | 
						|
from xautodl.procedures.q_exps import run_exp
 | 
						|
 | 
						|
import qlib
 | 
						|
from qlib.utils import init_instance_by_config
 | 
						|
from qlib.workflow import R
 | 
						|
from qlib.utils import flatten_dict
 | 
						|
 | 
						|
 | 
						|
def to_drop(config, pos_drop, other_drop):
 | 
						|
    config = copy.deepcopy(config)
 | 
						|
    net = config["task"]["model"]["kwargs"]["net_config"]
 | 
						|
    net["pos_drop"] = pos_drop
 | 
						|
    net["other_drop"] = other_drop
 | 
						|
    return config
 | 
						|
 | 
						|
 | 
						|
def to_layer(config, embed_dim, depth):
 | 
						|
    config = copy.deepcopy(config)
 | 
						|
    net = config["task"]["model"]["kwargs"]["net_config"]
 | 
						|
    net["embed_dim"] = embed_dim
 | 
						|
    net["num_heads"] = [4] * depth
 | 
						|
    net["mlp_hidden_multipliers"] = [4] * depth
 | 
						|
    return config
 | 
						|
 | 
						|
 | 
						|
def extend_transformer_settings(alg2configs, name):
 | 
						|
    config = copy.deepcopy(alg2configs[name])
 | 
						|
    for i in range(1, 9):
 | 
						|
        for j in (6, 12, 24, 32, 48, 64):
 | 
						|
            for k1 in (0, 0.05, 0.1, 0.2, 0.3):
 | 
						|
                for k2 in (0, 0.1):
 | 
						|
                    alg2configs[
 | 
						|
                        name + "-{:}x{:}-drop{:}_{:}".format(i, j, k1, k2)
 | 
						|
                    ] = to_layer(to_drop(config, k1, k2), j, i)
 | 
						|
    return alg2configs
 | 
						|
 | 
						|
 | 
						|
def replace_start_time(config, start_time):
 | 
						|
    config = copy.deepcopy(config)
 | 
						|
    xtime = datetime.strptime(start_time, "%Y-%m-%d")
 | 
						|
    config["data_handler_config"]["start_time"] = xtime.date()
 | 
						|
    config["data_handler_config"]["fit_start_time"] = xtime.date()
 | 
						|
    config["task"]["dataset"]["kwargs"]["segments"]["train"][0] = xtime.date()
 | 
						|
    return config
 | 
						|
 | 
						|
 | 
						|
def extend_train_data(alg2configs, name):
 | 
						|
    config = copy.deepcopy(alg2configs[name])
 | 
						|
    start_times = (
 | 
						|
        "2008-01-01",
 | 
						|
        "2008-07-01",
 | 
						|
        "2009-01-01",
 | 
						|
        "2009-07-01",
 | 
						|
        "2010-01-01",
 | 
						|
        "2011-01-01",
 | 
						|
        "2012-01-01",
 | 
						|
        "2013-01-01",
 | 
						|
    )
 | 
						|
    for start_time in start_times:
 | 
						|
        config = replace_start_time(config, start_time)
 | 
						|
        alg2configs[name + "s{:}".format(start_time)] = config
 | 
						|
    return alg2configs
 | 
						|
 | 
						|
 | 
						|
def refresh_record(alg2configs):
 | 
						|
    alg2configs = copy.deepcopy(alg2configs)
 | 
						|
    for key, config in alg2configs.items():
 | 
						|
        xlist = config["task"]["record"]
 | 
						|
        new_list = []
 | 
						|
        for x in xlist:
 | 
						|
            # remove PortAnaRecord and SignalMseRecord
 | 
						|
            if x["class"] != "PortAnaRecord" and x["class"] != "SignalMseRecord":
 | 
						|
                new_list.append(x)
 | 
						|
        ## add MultiSegRecord
 | 
						|
        new_list.append(
 | 
						|
            {
 | 
						|
                "class": "MultiSegRecord",
 | 
						|
                "module_path": "qlib.contrib.workflow",
 | 
						|
                "generate_kwargs": {
 | 
						|
                    "segments": {"train": "train", "valid": "valid", "test": "test"},
 | 
						|
                    "save": True,
 | 
						|
                },
 | 
						|
            }
 | 
						|
        )
 | 
						|
        config["task"]["record"] = new_list
 | 
						|
    return alg2configs
 | 
						|
 | 
						|
 | 
						|
def retrieve_configs():
 | 
						|
    # https://github.com/microsoft/qlib/blob/main/examples/benchmarks/
 | 
						|
    config_dir = (lib_dir / ".." / "configs" / "qlib").resolve()
 | 
						|
    # algorithm to file names
 | 
						|
    alg2names = OrderedDict()
 | 
						|
    alg2names["GRU"] = "workflow_config_gru_Alpha360.yaml"
 | 
						|
    alg2names["LSTM"] = "workflow_config_lstm_Alpha360.yaml"
 | 
						|
    alg2names["MLP"] = "workflow_config_mlp_Alpha360.yaml"
 | 
						|
    # A dual-stage attention-based recurrent neural network for time series prediction, IJCAI-2017
 | 
						|
    alg2names["ALSTM"] = "workflow_config_alstm_Alpha360.yaml"
 | 
						|
    # XGBoost: A Scalable Tree Boosting System, KDD-2016
 | 
						|
    alg2names["XGBoost"] = "workflow_config_xgboost_Alpha360.yaml"
 | 
						|
    # LightGBM: A Highly Efficient Gradient Boosting Decision Tree, NeurIPS-2017
 | 
						|
    alg2names["LightGBM"] = "workflow_config_lightgbm_Alpha360.yaml"
 | 
						|
    # State Frequency Memory (SFM): Stock Price Prediction via Discovering Multi-Frequency Trading Patterns, KDD-2017
 | 
						|
    alg2names["SFM"] = "workflow_config_sfm_Alpha360.yaml"
 | 
						|
    # DoubleEnsemble: A New Ensemble Method Based on Sample Reweighting and Feature Selection for Financial Data Analysis, https://arxiv.org/pdf/2010.01265.pdf
 | 
						|
    alg2names["DoubleE"] = "workflow_config_doubleensemble_Alpha360.yaml"
 | 
						|
    alg2names["TabNet"] = "workflow_config_TabNet_Alpha360.yaml"
 | 
						|
    alg2names["NAIVE-V1"] = "workflow_config_naive_v1_Alpha360.yaml"
 | 
						|
    alg2names["NAIVE-V2"] = "workflow_config_naive_v2_Alpha360.yaml"
 | 
						|
    alg2names["Transformer"] = "workflow_config_transformer_Alpha360.yaml"
 | 
						|
    alg2names["TSF"] = "workflow_config_transformer_basic_Alpha360.yaml"
 | 
						|
 | 
						|
    # find the yaml paths
 | 
						|
    alg2configs = OrderedDict()
 | 
						|
    print("Start retrieving the algorithm configurations")
 | 
						|
    for idx, (alg, name) in enumerate(alg2names.items()):
 | 
						|
        path = config_dir / name
 | 
						|
        assert path.exists(), "{:} does not exist.".format(path)
 | 
						|
        with open(path) as fp:
 | 
						|
            alg2configs[alg] = yaml.safe_load(fp)
 | 
						|
        print(
 | 
						|
            "The {:02d}/{:02d}-th baseline algorithm is {:9s} ({:}).".format(
 | 
						|
                idx, len(alg2configs), alg, path
 | 
						|
            )
 | 
						|
        )
 | 
						|
    alg2configs = extend_transformer_settings(alg2configs, "TSF")
 | 
						|
    alg2configs = refresh_record(alg2configs)
 | 
						|
    # extend the algorithms by different train-data
 | 
						|
    for name in ("TSF-2x24-drop0_0", "TSF-6x32-drop0_0"):
 | 
						|
        alg2configs = extend_train_data(alg2configs, name)
 | 
						|
    print(
 | 
						|
        "There are {:} algorithms : {:}".format(
 | 
						|
            len(alg2configs), list(alg2configs.keys())
 | 
						|
        )
 | 
						|
    )
 | 
						|
    return alg2configs
 | 
						|
 | 
						|
 | 
						|
def main(alg_name, market, config, times, save_dir, gpu):
 | 
						|
 | 
						|
    pprint("Run {:}".format(alg_name))
 | 
						|
    config = update_market(config, market)
 | 
						|
    config = update_gpu(config, gpu)
 | 
						|
 | 
						|
    qlib.init(**config.get("qlib_init"))
 | 
						|
    dataset_config = config.get("task").get("dataset")
 | 
						|
    dataset = init_instance_by_config(dataset_config)
 | 
						|
    pprint(dataset_config)
 | 
						|
    pprint(dataset)
 | 
						|
 | 
						|
    for irun in range(times):
 | 
						|
        run_exp(
 | 
						|
            config.get("task"),
 | 
						|
            dataset,
 | 
						|
            alg_name,
 | 
						|
            "recorder-{:02d}-{:02d}".format(irun, times),
 | 
						|
            "{:}-{:}".format(save_dir, market),
 | 
						|
        )
 | 
						|
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
 | 
						|
    alg2configs = retrieve_configs()
 | 
						|
 | 
						|
    parser = argparse.ArgumentParser("Baselines")
 | 
						|
    parser.add_argument(
 | 
						|
        "--save_dir",
 | 
						|
        type=str,
 | 
						|
        default="./outputs/qlib-baselines",
 | 
						|
        help="The checkpoint directory.",
 | 
						|
    )
 | 
						|
    parser.add_argument(
 | 
						|
        "--market",
 | 
						|
        type=str,
 | 
						|
        default="all",
 | 
						|
        choices=["csi100", "csi300", "all"],
 | 
						|
        help="The market indicator.",
 | 
						|
    )
 | 
						|
    parser.add_argument("--times", type=int, default=5, help="The repeated run times.")
 | 
						|
    parser.add_argument(
 | 
						|
        "--shared_dataset",
 | 
						|
        type=arg_str2bool,
 | 
						|
        default=False,
 | 
						|
        help="Whether to share the dataset for all algorithms?",
 | 
						|
    )
 | 
						|
    parser.add_argument(
 | 
						|
        "--gpu", type=int, default=0, help="The GPU ID used for train / test."
 | 
						|
    )
 | 
						|
    parser.add_argument(
 | 
						|
        "--alg",
 | 
						|
        type=str,
 | 
						|
        choices=list(alg2configs.keys()),
 | 
						|
        nargs="+",
 | 
						|
        required=True,
 | 
						|
        help="The algorithm name(s).",
 | 
						|
    )
 | 
						|
    args = parser.parse_args()
 | 
						|
 | 
						|
    if len(args.alg) == 1:
 | 
						|
        main(
 | 
						|
            args.alg[0],
 | 
						|
            args.market,
 | 
						|
            alg2configs[args.alg[0]],
 | 
						|
            args.times,
 | 
						|
            args.save_dir,
 | 
						|
            args.gpu,
 | 
						|
        )
 | 
						|
    elif len(args.alg) > 1:
 | 
						|
        assert args.shared_dataset, "Must allow share dataset"
 | 
						|
        pprint(args)
 | 
						|
        configs = [
 | 
						|
            update_gpu(update_market(alg2configs[name], args.market), args.gpu)
 | 
						|
            for name in args.alg
 | 
						|
        ]
 | 
						|
        qlib.init(**configs[0].get("qlib_init"))
 | 
						|
        dataset_config = configs[0].get("task").get("dataset")
 | 
						|
        dataset = init_instance_by_config(dataset_config)
 | 
						|
        pprint(dataset_config)
 | 
						|
        pprint(dataset)
 | 
						|
        for alg_name, config in zip(args.alg, configs):
 | 
						|
            print("Run {:} over {:}".format(alg_name, args.alg))
 | 
						|
            for irun in range(args.times):
 | 
						|
                run_exp(
 | 
						|
                    config.get("task"),
 | 
						|
                    dataset,
 | 
						|
                    alg_name,
 | 
						|
                    "recorder-{:02d}-{:02d}".format(irun, args.times),
 | 
						|
                    "{:}-{:}".format(args.save_dir, args.market),
 | 
						|
                )
 |