xautodl/exps/LFNA/basic.py
2021-04-29 16:30:47 +08:00

166 lines
5.7 KiB
Python

#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
#####################################################
# python exps/LFNA/basic.py
#####################################################
import sys, time, torch, random, argparse
from copy import deepcopy
from pathlib import Path
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
if str(lib_dir) not in sys.path:
sys.path.insert(0, str(lib_dir))
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint
from log_utils import time_string
from procedures.advanced_main import basic_train_fn, basic_eval_fn
from procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric
from datasets.synthetic_core import get_synthetic_env
from models.xcore import get_model
def main(args):
torch.set_num_threads(args.workers)
prepare_seed(args.rand_seed)
logger = prepare_logger(args)
dynamic_env = get_synthetic_env()
historical_x, historical_y = None, None
for idx, (timestamp, (allx, ally)) in enumerate(dynamic_env):
if historical_x is not None:
mean, std = historical_x.mean().item(), historical_x.std().item()
else:
mean, std = 0, 1
model_kwargs = dict(input_dim=1, output_dim=1, mean=mean, std=std)
model = get_model(dict(model_type="simple_mlp"), **model_kwargs)
# create the current data loader
if historical_x is not None:
train_dataset = torch.utils.data.TensorDataset(historical_x, historical_y)
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.workers,
)
optimizer = torch.optim.Adam(
model.parameters(), lr=args.init_lr, amsgrad=True
)
criterion = torch.nn.MSELoss()
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer,
milestones=[
int(args.epochs * 0.25),
int(args.epochs * 0.5),
int(args.epochs * 0.75),
],
gamma=0.3,
)
for _iepoch in range(args.epochs):
results = basic_train_fn(
train_loader, model, criterion, optimizer, MSEMetric(), logger
)
lr_scheduler.step()
if _iepoch % args.log_per_epoch == 0:
log_str = (
"[{:}]".format(time_string())
+ " [{:04d}/{:04d}][{:04d}/{:04d}]".format(
idx, len(dynamic_env), _iepoch, args.epochs
)
+ " mse: {:.5f}, lr: {:.4f}".format(
results["mse"], min(lr_scheduler.get_last_lr())
)
)
logger.log(log_str)
results = basic_eval_fn(train_loader, model, MSEMetric(), logger)
logger.log(
"[{:}] [{:04d}/{:04d}] train-mse: {:.5f}".format(
time_string(), idx, len(dynamic_env), results["mse"]
)
)
metric = ComposeMetric(MSEMetric(), SaveMetric())
eval_dataset = torch.utils.data.TensorDataset(allx, ally)
eval_loader = torch.utils.data.DataLoader(
eval_dataset,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.workers,
)
results = basic_eval_fn(eval_loader, model, metric, logger)
log_str = (
"[{:}]".format(time_string())
+ " [{:04d}/{:04d}]".format(idx, len(dynamic_env))
+ " eval-mse: {:.5f}".format(results["mse"])
)
logger.log(log_str)
save_path = logger.path(None) / "{:04d}-{:04d}.pth".format(
idx, len(dynamic_env)
)
save_checkpoint(
{"model": model.state_dict(), "index": idx, "timestamp": timestamp},
save_path,
logger,
)
# Update historical data
if historical_x is None:
historical_x, historical_y = allx, ally
else:
historical_x, historical_y = torch.cat((historical_x, allx)), torch.cat(
(historical_y, ally)
)
logger.log("")
logger.log("-" * 200 + "\n")
logger.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser("Use all the past data to train.")
parser.add_argument(
"--save_dir",
type=str,
default="./outputs/lfna-synthetic/use-all-past-data",
help="The checkpoint directory.",
)
parser.add_argument(
"--init_lr",
type=float,
default=0.1,
help="The initial learning rate for the optimizer (default is Adam)",
)
parser.add_argument(
"--batch_size",
type=int,
default=256,
help="The batch size",
)
parser.add_argument(
"--epochs",
type=int,
default=2000,
help="The total number of epochs.",
)
parser.add_argument(
"--log_per_epoch",
type=int,
default=200,
help="Log the training information per __ epochs.",
)
parser.add_argument(
"--workers",
type=int,
default=4,
help="The number of data loading workers (default: 4)",
)
# Random Seed
parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")
args = parser.parse_args()
if args.rand_seed is None or args.rand_seed < 0:
args.rand_seed = random.randint(1, 100000)
assert args.save_dir is not None, "The save dir argument can not be None"
main(args)