Add simple baseline for LFNA

This commit is contained in:
D-X-Y 2021-04-29 16:30:47 +08:00
parent 2c56938ee7
commit 14905d0011
8 changed files with 296 additions and 307 deletions

View File

@ -11,270 +11,109 @@ lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
if str(lib_dir) not in sys.path:
sys.path.insert(0, str(lib_dir))
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint
from log_utils import AverageMeter, time_string, convert_secs2time
from log_utils import time_string
from procedures.advanced_main import basic_train_fn, basic_eval_fn
from procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric
from datasets.synthetic_core import get_synthetic_env
from models.xcore import get_model
def main(args):
torch.set_num_threads(args.workers)
prepare_seed(args.rand_seed)
logger = prepare_logger(args)
dynamic_env = get_synthetic_env()
historical_x, historical_y = None, None
for idx, (timestamp, (allx, ally)) in enumerate(dynamic_env):
import pdb
pdb.set_trace()
train_data, valid_data, xshape, class_num = get_datasets(
args.dataset, args.data_path, args.cutout_length
)
train_loader = torch.utils.data.DataLoader(
train_data,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.workers,
pin_memory=True,
)
valid_loader = torch.utils.data.DataLoader(
valid_data,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.workers,
pin_memory=True,
)
# get configures
model_config = load_config(args.model_config, {"class_num": class_num}, logger)
optim_config = load_config(args.optim_config, {"class_num": class_num}, logger)
if historical_x is not None:
mean, std = historical_x.mean().item(), historical_x.std().item()
else:
mean, std = 0, 1
model_kwargs = dict(input_dim=1, output_dim=1, mean=mean, std=std)
model = get_model(dict(model_type="simple_mlp"), **model_kwargs)
if args.model_source == "normal":
base_model = obtain_model(model_config)
elif args.model_source == "nas":
base_model = obtain_nas_infer_model(model_config, args.extra_model_path)
elif args.model_source == "autodl-searched":
base_model = obtain_model(model_config, args.extra_model_path)
else:
raise ValueError("invalid model-source : {:}".format(args.model_source))
flop, param = get_model_infos(base_model, xshape)
logger.log("model ====>>>>:\n{:}".format(base_model))
logger.log("model information : {:}".format(base_model.get_message()))
logger.log("-" * 50)
logger.log(
"Params={:.2f} MB, FLOPs={:.2f} M ... = {:.2f} G".format(
param, flop, flop / 1e3
)
)
logger.log("-" * 50)
logger.log("train_data : {:}".format(train_data))
logger.log("valid_data : {:}".format(valid_data))
optimizer, scheduler, criterion = get_optim_scheduler(
base_model.parameters(), optim_config
)
logger.log("optimizer : {:}".format(optimizer))
logger.log("scheduler : {:}".format(scheduler))
logger.log("criterion : {:}".format(criterion))
last_info, model_base_path, model_best_path = (
logger.path("info"),
logger.path("model"),
logger.path("best"),
)
network, criterion = torch.nn.DataParallel(base_model).cuda(), criterion.cuda()
if last_info.exists(): # automatically resume from previous checkpoint
logger.log(
"=> loading checkpoint of the last-info '{:}' start".format(last_info)
)
last_infox = torch.load(last_info)
start_epoch = last_infox["epoch"] + 1
last_checkpoint_path = last_infox["last_checkpoint"]
if not last_checkpoint_path.exists():
logger.log(
"Does not find {:}, try another path".format(last_checkpoint_path)
# create the current data loader
if historical_x is not None:
train_dataset = torch.utils.data.TensorDataset(historical_x, historical_y)
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.workers,
)
last_checkpoint_path = (
last_info.parent
/ last_checkpoint_path.parent.name
/ last_checkpoint_path.name
optimizer = torch.optim.Adam(
model.parameters(), lr=args.init_lr, amsgrad=True
)
checkpoint = torch.load(last_checkpoint_path)
base_model.load_state_dict(checkpoint["base-model"])
scheduler.load_state_dict(checkpoint["scheduler"])
optimizer.load_state_dict(checkpoint["optimizer"])
valid_accuracies = checkpoint["valid_accuracies"]
max_bytes = checkpoint["max_bytes"]
logger.log(
"=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format(
last_info, start_epoch
criterion = torch.nn.MSELoss()
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer,
milestones=[
int(args.epochs * 0.25),
int(args.epochs * 0.5),
int(args.epochs * 0.75),
],
gamma=0.3,
)
)
elif args.resume is not None:
assert Path(args.resume).exists(), "Can not find the resume file : {:}".format(
args.resume
)
checkpoint = torch.load(args.resume)
start_epoch = checkpoint["epoch"] + 1
base_model.load_state_dict(checkpoint["base-model"])
scheduler.load_state_dict(checkpoint["scheduler"])
optimizer.load_state_dict(checkpoint["optimizer"])
valid_accuracies = checkpoint["valid_accuracies"]
max_bytes = checkpoint["max_bytes"]
logger.log(
"=> loading checkpoint from '{:}' start with {:}-th epoch.".format(
args.resume, start_epoch
)
)
elif args.init_model is not None:
assert Path(
args.init_model
).exists(), "Can not find the initialization file : {:}".format(args.init_model)
checkpoint = torch.load(args.init_model)
base_model.load_state_dict(checkpoint["base-model"])
start_epoch, valid_accuracies, max_bytes = 0, {"best": -1}, {}
logger.log("=> initialize the model from {:}".format(args.init_model))
else:
logger.log("=> do not find the last-info file : {:}".format(last_info))
start_epoch, valid_accuracies, max_bytes = 0, {"best": -1}, {}
train_func, valid_func = get_procedures(args.procedure)
total_epoch = optim_config.epochs + optim_config.warmup
# Main Training and Evaluation Loop
start_time = time.time()
epoch_time = AverageMeter()
for epoch in range(start_epoch, total_epoch):
scheduler.update(epoch, 0.0)
need_time = "Time Left: {:}".format(
convert_secs2time(epoch_time.avg * (total_epoch - epoch), True)
)
epoch_str = "epoch={:03d}/{:03d}".format(epoch, total_epoch)
LRs = scheduler.get_lr()
find_best = False
# set-up drop-out ratio
if hasattr(base_model, "update_drop_path"):
base_model.update_drop_path(
model_config.drop_path_prob * epoch / total_epoch
)
logger.log(
"\n***{:s}*** start {:s} {:s}, LR=[{:.6f} ~ {:.6f}], scheduler={:}".format(
time_string(), epoch_str, need_time, min(LRs), max(LRs), scheduler
)
)
# train for one epoch
train_loss, train_acc1, train_acc5 = train_func(
train_loader,
network,
criterion,
scheduler,
optimizer,
optim_config,
epoch_str,
args.print_freq,
logger,
)
# log the results
logger.log(
"***{:s}*** TRAIN [{:}] loss = {:.6f}, accuracy-1 = {:.2f}, accuracy-5 = {:.2f}".format(
time_string(), epoch_str, train_loss, train_acc1, train_acc5
)
)
# evaluate the performance
if (epoch % args.eval_frequency == 0) or (epoch + 1 == total_epoch):
logger.log("-" * 150)
valid_loss, valid_acc1, valid_acc5 = valid_func(
valid_loader,
network,
criterion,
optim_config,
epoch_str,
args.print_freq_eval,
logger,
)
valid_accuracies[epoch] = valid_acc1
logger.log(
"***{:s}*** VALID [{:}] loss = {:.6f}, accuracy@1 = {:.2f}, accuracy@5 = {:.2f} | Best-Valid-Acc@1={:.2f}, Error@1={:.2f}".format(
time_string(),
epoch_str,
valid_loss,
valid_acc1,
valid_acc5,
valid_accuracies["best"],
100 - valid_accuracies["best"],
for _iepoch in range(args.epochs):
results = basic_train_fn(
train_loader, model, criterion, optimizer, MSEMetric(), logger
)
)
if valid_acc1 > valid_accuracies["best"]:
valid_accuracies["best"] = valid_acc1
find_best = True
logger.log(
"Currently, the best validation accuracy found at {:03d}-epoch :: acc@1={:.2f}, acc@5={:.2f}, error@1={:.2f}, error@5={:.2f}, save into {:}.".format(
epoch,
valid_acc1,
valid_acc5,
100 - valid_acc1,
100 - valid_acc5,
model_best_path,
lr_scheduler.step()
if _iepoch % args.log_per_epoch == 0:
log_str = (
"[{:}]".format(time_string())
+ " [{:04d}/{:04d}][{:04d}/{:04d}]".format(
idx, len(dynamic_env), _iepoch, args.epochs
)
+ " mse: {:.5f}, lr: {:.4f}".format(
results["mse"], min(lr_scheduler.get_last_lr())
)
)
)
num_bytes = (
torch.cuda.max_memory_cached(next(network.parameters()).device) * 1.0
)
logger.log(log_str)
results = basic_eval_fn(train_loader, model, MSEMetric(), logger)
logger.log(
"[GPU-Memory-Usage on {:} is {:} bytes, {:.2f} KB, {:.2f} MB, {:.2f} GB.]".format(
next(network.parameters()).device,
int(num_bytes),
num_bytes / 1e3,
num_bytes / 1e6,
num_bytes / 1e9,
"[{:}] [{:04d}/{:04d}] train-mse: {:.5f}".format(
time_string(), idx, len(dynamic_env), results["mse"]
)
)
max_bytes[epoch] = num_bytes
if epoch % 10 == 0:
torch.cuda.empty_cache()
# save checkpoint
save_path = save_checkpoint(
{
"epoch": epoch,
"args": deepcopy(args),
"max_bytes": deepcopy(max_bytes),
"FLOP": flop,
"PARAM": param,
"valid_accuracies": deepcopy(valid_accuracies),
"model-config": model_config._asdict(),
"optim-config": optim_config._asdict(),
"base-model": base_model.state_dict(),
"scheduler": scheduler.state_dict(),
"optimizer": optimizer.state_dict(),
},
model_base_path,
logger,
metric = ComposeMetric(MSEMetric(), SaveMetric())
eval_dataset = torch.utils.data.TensorDataset(allx, ally)
eval_loader = torch.utils.data.DataLoader(
eval_dataset,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.workers,
)
if find_best:
copy_checkpoint(model_base_path, model_best_path, logger)
last_info = save_checkpoint(
{
"epoch": epoch,
"args": deepcopy(args),
"last_checkpoint": save_path,
},
logger.path("info"),
results = basic_eval_fn(eval_loader, model, metric, logger)
log_str = (
"[{:}]".format(time_string())
+ " [{:04d}/{:04d}]".format(idx, len(dynamic_env))
+ " eval-mse: {:.5f}".format(results["mse"])
)
logger.log(log_str)
save_path = logger.path(None) / "{:04d}-{:04d}.pth".format(
idx, len(dynamic_env)
)
save_checkpoint(
{"model": model.state_dict(), "index": idx, "timestamp": timestamp},
save_path,
logger,
)
# measure elapsed time
epoch_time.update(time.time() - start_time)
start_time = time.time()
# Update historical data
if historical_x is None:
historical_x, historical_y = allx, ally
else:
historical_x, historical_y = torch.cat((historical_x, allx)), torch.cat(
(historical_y, ally)
)
logger.log("")
logger.log("\n" + "-" * 200)
logger.log(
"Finish training/validation in {:} with Max-GPU-Memory of {:.2f} MB, and save final checkpoint into {:}".format(
convert_secs2time(epoch_time.sum, True),
max(v for k, v in max_bytes.items()) / 1e6,
logger.path("info"),
)
)
logger.log("-" * 200 + "\n")
logger.close()
@ -287,11 +126,35 @@ if __name__ == "__main__":
default="./outputs/lfna-synthetic/use-all-past-data",
help="The checkpoint directory.",
)
parser.add_argument(
"--init_lr",
type=float,
default=0.1,
help="The initial learning rate for the optimizer (default is Adam)",
)
parser.add_argument(
"--batch_size",
type=int,
default=256,
help="The batch size",
)
parser.add_argument(
"--epochs",
type=int,
default=2000,
help="The total number of epochs.",
)
parser.add_argument(
"--log_per_epoch",
type=int,
default=200,
help="Log the training information per __ epochs.",
)
parser.add_argument(
"--workers",
type=int,
default=8,
help="number of data loading workers (default: 8)",
default=4,
help="The number of data loading workers (default: 4)",
)
# Random Seed
parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")

View File

@ -59,8 +59,10 @@ class Logger(object):
)
def path(self, mode):
valids = ("model", "best", "info", "log")
if mode == "model":
valids = ("model", "best", "info", "log", None)
if mode is None:
return self.log_dir
elif mode == "model":
return self.model_dir / "seed-{:}-basic.pth".format(self.seed)
elif mode == "best":
return self.model_dir / "seed-{:}-best.pth".format(self.seed)

View File

@ -4,12 +4,14 @@
# Use module in xlayers to construct different models #
#######################################################
from typing import List, Text, Dict, Any
import torch
__all__ = ["get_model"]
from xlayers.super_core import SuperSequential, SuperMLPv1
from xlayers.super_core import SuperSequential
from xlayers.super_core import SuperSimpleNorm
from xlayers.super_core import SuperLeakyReLU
from xlayers.super_core import SuperLinear
@ -19,9 +21,9 @@ def get_model(config: Dict[Text, Any], **kwargs):
model = SuperSequential(
SuperSimpleNorm(kwargs["mean"], kwargs["std"]),
SuperLinear(kwargs["input_dim"], 200),
torch.nn.LeakyReLU(),
SuperLeakyReLU(),
SuperLinear(200, 100),
torch.nn.LeakyReLU(),
SuperLeakyReLU(),
SuperLinear(100, kwargs["output_dim"]),
)
else:

View File

@ -12,49 +12,48 @@ from log_utils import time_string
from .eval_funcs import obtain_accuracy
def basic_train(
def get_device(tensors):
if isinstance(tensors, (list, tuple)):
return get_device(tensors[0])
elif isinstance(tensors, dict):
for key, value in tensors.items():
return get_device(value)
else:
return tensors.device
def basic_train_fn(
xloader,
network,
criterion,
scheduler,
optimizer,
optim_config,
extra_info,
print_freq,
metric,
logger,
):
loss, acc1, acc5 = procedure(
results = procedure(
xloader,
network,
criterion,
scheduler,
optimizer,
metric,
"train",
optim_config,
extra_info,
print_freq,
logger,
)
return loss, acc1, acc5
return results
def basic_valid(
xloader, network, criterion, optim_config, extra_info, print_freq, logger
):
def basic_eval_fn(xloader, network, metric, logger):
with torch.no_grad():
loss, acc1, acc5 = procedure(
results = procedure(
xloader,
network,
criterion,
None,
None,
metric,
"valid",
None,
extra_info,
print_freq,
logger,
)
return loss, acc1, acc5
return results
def procedure(
@ -62,12 +61,11 @@ def procedure(
network,
criterion,
optimizer,
eval_metric,
metric,
mode: Text,
print_freq: int = 100,
logger_fn: Callable = None,
):
data_time, batch_time, losses = AverageMeter(), AverageMeter(), AverageMeter()
data_time, batch_time = AverageMeter(), AverageMeter()
if mode.lower() == "train":
network.train()
elif mode.lower() == "valid":
@ -80,49 +78,23 @@ def procedure(
# measure data loading time
data_time.update(time.time() - end)
# calculate prediction and loss
targets = targets.cuda(non_blocking=True)
if mode == "train":
optimizer.zero_grad()
outputs = network(inputs)
loss = criterion(outputs, targets)
targets = targets.to(get_device(outputs))
if mode == "train":
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
# record
metrics = eval_metric(logits.data, targets.data)
prec1, prec5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5))
losses.update(loss.item(), inputs.size(0))
top1.update(prec1.item(), inputs.size(0))
top5.update(prec5.item(), inputs.size(0))
with torch.no_grad():
results = metric(outputs, targets)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % print_freq == 0 or (i + 1) == len(xloader):
Sstr = (
" {:5s} ".format(mode.upper())
+ time_string()
+ " [{:}][{:03d}/{:03d}]".format(extra_info, i, len(xloader))
)
Lstr = "Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})".format(
loss=losses, top1=top1, top5=top5
)
Istr = "Size={:}".format(list(inputs.size()))
logger.log(Sstr + " " + Tstr + " " + Lstr + " " + Istr)
logger.log(
" **{mode:5s}** Prec@1 {top1.avg:.2f} Prec@5 {top5.avg:.2f} Error@1 {error1:.2f} Error@5 {error5:.2f} Loss:{loss:.3f}".format(
mode=mode.upper(),
top1=top1,
top5=top5,
error1=100 - top1.avg,
error5=100 - top5.avg,
loss=losses.avg,
)
)
return losses.avg, top1.avg, top5.avg
return metric.get_info()

View File

@ -18,11 +18,3 @@ def obtain_accuracy(output, target, topk=(1,)):
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
class EvaluationMetric(abc.ABC):
def __init__(self):
self._total_metrics = 0
def __len__(self):
return self._total_metrics

View File

@ -0,0 +1,134 @@
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.04 #
#####################################################
import abc
import numpy as np
import torch
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0.0
self.avg = 0.0
self.sum = 0.0
self.count = 0.0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __repr__(self):
return "{name}(val={val}, avg={avg}, count={count})".format(
name=self.__class__.__name__, **self.__dict__
)
class Metric(abc.ABC):
"""The default meta metric class."""
def __init__(self):
self.reset()
def reset(self):
raise NotImplementedError
def __call__(self, predictions, targets):
raise NotImplementedError
def get_info(self):
raise NotImplementedError
def __repr__(self):
return "{name}({inner})".format(
name=self.__class__.__name__, inner=self.inner_repr()
)
def inner_repr(self):
return ""
class ComposeMetric(Metric):
"""The composed metric class."""
def __init__(self, *metric_list):
self.reset()
for metric in metric_list:
self.append(metric)
def reset(self):
self._metric_list = []
def append(self, metric):
if not isinstance(metric, Metric):
raise ValueError(
"The input metric is not correct: {:}".format(type(metric))
)
self._metric_list.append(metric)
def __len__(self):
return len(self._metric_list)
def __call__(self, predictions, targets):
results = list()
for metric in self._metric_list:
results.append(metric(predictions, targets))
return results
def get_info(self):
results = dict()
for metric in self._metric_list:
for key, value in metric.get_info().items():
results[key] = value
return results
def inner_repr(self):
xlist = []
for metric in self._metric_list:
xlist.append(str(metric))
return ",".join(xlist)
class MSEMetric(Metric):
"""The metric for mse."""
def reset(self):
self._mse = AverageMeter()
def __call__(self, predictions, targets):
if isinstance(predictions, torch.Tensor) and isinstance(targets, torch.Tensor):
batch = predictions.shape[0]
loss = torch.nn.functional.mse_loss(predictions.data, targets.data)
loss = loss.item()
self._mse.update(loss, batch)
return loss
else:
raise NotImplementedError
def get_info(self):
return {"mse": self._mse.avg}
class SaveMetric(Metric):
"""The metric for mse."""
def reset(self):
self._predicts = []
def __call__(self, predictions, targets=None):
if isinstance(predictions, torch.Tensor):
predicts = predictions.cpu().numpy()
self._predicts.append(predicts)
return predicts
else:
raise NotImplementedError
def get_info(self):
all_predicts = np.concatenate(self._predicts)
return {"predictions": all_predicts}

View File

@ -17,7 +17,7 @@ from .super_module import BoolSpaceType
class SuperReLU(SuperModule):
"""Applies a the rectified linear unit function element-wise."""
def __init__(self, inplace=False) -> None:
def __init__(self, inplace: bool = False) -> None:
super(SuperReLU, self).__init__()
self._inplace = inplace
@ -33,3 +33,26 @@ class SuperReLU(SuperModule):
def extra_repr(self) -> str:
return "inplace=True" if self._inplace else ""
class SuperLeakyReLU(SuperModule):
"""https://pytorch.org/docs/stable/_modules/torch/nn/modules/activation.html#LeakyReLU"""
def __init__(self, negative_slope: float = 1e-2, inplace: bool = False) -> None:
super(SuperLeakyReLU, self).__init__()
self._negative_slope = negative_slope
self._inplace = inplace
@property
def abstract_search_space(self):
return spaces.VirtualNode(id(self))
def forward_candidate(self, input: torch.Tensor) -> torch.Tensor:
return self.forward_raw(input)
def forward_raw(self, input: torch.Tensor) -> torch.Tensor:
return F.leaky_relu(input, self._negative_slope, self._inplace)
def extra_repr(self) -> str:
inplace_str = "inplace=True" if self._inplace else ""
return "negative_slope={}{}".format(self._negative_slope, inplace_str)

View File

@ -15,6 +15,7 @@ from .super_attention import SuperAttention
from .super_transformer import SuperTransformerEncoderLayer
from .super_activations import SuperReLU
from .super_activations import SuperLeakyReLU
from .super_trade_stem import SuperAlphaEBDv1
from .super_positional_embedding import SuperPositionalEncoder