5.2 KiB
An Algorithm-Agnostic NAS Benchmark (AA-NAS-Bench)
We propose an Algorithm-Agnostic NAS Benchmark (AA-NAS-Bench) with a fixed search space, which provides a unified benchmark for almost any up-to-date NAS algorithms. The design of our search space is inspired from that used in the most popular cell-based searching algorithms, where a cell is represented as a directed acyclic graph. Each edge here is associated with an operation selected from a predefined operation set. For it to be applicable for all NAS algorithms, the search space defined in AA-NAS-Bench includes 4 nodes and 5 associated operation options, which generates 15,625 neural cell candidates in total.
In this Markdown file, we provide:
- Detailed instruction to reproduce AA-NAS-Bench.
- 10 NAS algorithms evaluated in our paper.
Note: please use PyTorch >= 1.1.0
and Python >= 3.6.0
.
How to Use AA-NAS-Bench
- Creating AA-NAS-Bench API from a file:
from aa_nas_api import AANASBenchAPI
api = AANASBenchAPI('$path_to_meta_aa_nas_bench_file')
api = AANASBenchAPI('AA-NAS-Bench-v1_0.pth')
- Show the number of architectures
len(api)
and each architectureapi[i]
:
num = len(api)
for i, arch_str in enumerate(api):
print ('{:5d}/{:5d} : {:}'.format(i, len(api), arch_str))
- Show the results of all trials for a single architecture:
# show all information for a specific architecture
api.show(1)
api.show(2)
# show the mean loss and accuracy of an architecture
info = api.query_meta_info_by_index(1)
loss, accuracy = info.get_metrics('cifar10', 'train')
flops, params, latency = info.get_comput_costs('cifar100')
# get the detailed information
results = api.query_by_index(1, 'cifar100')
print ('There are {:} trials for this architecture [{:}] on cifar100'.format(len(results), api[1]))
print ('Latency : {:}'.format(results[0].get_latency()))
print ('Train Info : {:}'.format(results[0].get_train()))
print ('Valid Info : {:}'.format(results[0].get_eval('x-valid')))
print ('Test Info : {:}'.format(results[0].get_eval('x-test')))
# for the metric after a specific epoch
print ('Train Info [10-th epoch] : {:}'.format(results[0].get_train(10)))
- Query the index of an architecture by string
index = api.query_index_by_arch('|nor_conv_3x3~0|+|nor_conv_3x3~0|avg_pool_3x3~1|+|skip_connect~0|nor_conv_3x3~1|skip_connect~2|')
api.show(index)
- For other usages, please see
lib/aa_nas_api/api.py
Instruction to Generate AA-NAS-Bench
- generate the meta file for AA-NAS-Bench using the following script, where
AA-NAS-BENCH
indicates the name and4
indicates the maximum number of nodes in a cell.
bash scripts-search/AA-NAS-meta-gen.sh AA-NAS-BENCH 4
- train earch architecture on a single GPU (see commands in
output/AA-NAS-BENCH-4/meta-node-4.opt-script.txt
which is automatically generated by step-1).
CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/AA-NAS-train-archs.sh 0 389 -1 '777 888 999'
This command will train 390 architectures (id from 0 to 389) using the following four kinds of splits with three random seeds (777, 888, 999).
Dataset | Train | Eval |
---|---|---|
CIFAR-10 | train | valid |
CIFAR-10 | train + valid | test |
CIFAR-100 | train | valid+test |
ImageNet-16-120 | train | valid+test |
- calculate the latency, merge the results of all architectures, and simplify the results.
(see commands in
output/AA-NAS-BENCH-4/meta-node-4.cal-script.txt
which is automatically generated by step-1).
OMP_NUM_THREADS=6 CUDA_VISIBLE_DEVICES=0 python exps/AA-NAS-statistics.py --mode cal --target_dir 000000-000389-C16-N5
- merge all results into a single file for AA-NAS-Bench-API.
OMP_NUM_THREADS=4 python exps/AA-NAS-statistics.py --mode merge
[option] train a single architecture on a single GPU.
CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/AA-NAS-train-net.sh resnet 16 5
CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/AA-NAS-train-net.sh '|nor_conv_3x3~0|+|nor_conv_3x3~0|nor_conv_3x3~1|+|skip_connect~0|skip_connect~1|skip_connect~2|' 16 5
To Reproduce 10 Baseline NAS Algorithms in AA-NAS-Bench
We have tried our best to implement each method. However, still, some algorithms might obtain non-optimal results since their hyper-parameters might not fit our AA-NAS-Bench. If researchers can provide better results with different hyper-parameters, we are happy to update results according to the new experimental results. We also welcome more NAS algorithms to test on our dataset and would include them accordingly.
-[1] CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V1.sh cifar10 -1
-[2] CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V2.sh cifar10 -1
-[3] CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/GDAS.sh cifar10 -1
-[4] CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/SETN.sh cifar10 -1
-[5] CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/ENAS.sh cifar10 -1
-[6] CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/RANDOM-NAS.sh cifar10 -1
-[7] bash ./scripts-search/algos/R-EA.sh -1
-[8] bash ./scripts-search/algos/Random.sh -1
-[9] bash ./scripts-search/algos/REINFORCE.sh -1
-[10] bash ./scripts-search/algos/BOHB.sh -1