8.9 KiB
NAS-BENCH-102: Extending the Scope of Reproducible Neural Architecture Search
We propose an algorithm-agnostic NAS benchmark (NAS-Bench-102) with a fixed search space, which provides a unified benchmark for almost any up-to-date NAS algorithms. The design of our search space is inspired from that used in the most popular cell-based searching algorithms, where a cell is represented as a directed acyclic graph. Each edge here is associated with an operation selected from a predefined operation set. For it to be applicable for all NAS algorithms, the search space defined in NAS-Bench-102 includes 4 nodes and 5 associated operation options, which generates 15,625 neural cell candidates in total.
In this Markdown file, we provide:
- How to Use NAS-Bench-102
- Instruction to re-generate NAS-Bench-102
- 10 NAS algorithms evaluated in our paper
Note: please use PyTorch >= 1.2.0
and Python >= 3.6.0
.
Preparation and Download
The benchmark file of NAS-Bench-102 can be downloaded from Google Drive or Baidu-Wangpan (code:6u5d). You can move it to anywhere you want and send its path to our API for initialization.
- v1.0:
NAS-Bench-102-v1_0-e61699.pth
, wheree61699
is the last six digits for this file.
The training and evaluation data used in NAS-Bench-102 can be downloaded from Google Drive or Baidu-Wangpan (code:4fg7).
It is recommended to put these data into $TORCH_HOME
(~/.torch/
by default). If you want to generate NAS-Bench-102 or similar NAS datasets or training models by yourself, you need these data.
How to Use NAS-Bench-102
- Creating an API instance from a file:
from nas_102_api import NASBench102API
api = NASBench102API('$path_to_meta_nas_bench_file')
api = NASBench102API('NAS-Bench-102-v1_0-e61699.pth')
- Show the number of architectures
len(api)
and each architectureapi[i]
:
num = len(api)
for i, arch_str in enumerate(api):
print ('{:5d}/{:5d} : {:}'.format(i, len(api), arch_str))
- Show the results of all trials for a single architecture:
# show all information for a specific architecture
api.show(1)
api.show(2)
# show the mean loss and accuracy of an architecture
info = api.query_meta_info_by_index(1)
res_metrics = info.get_metrics('cifar10', 'train')
cost_metrics = info.get_comput_costs('cifar100')
# get the detailed information
results = api.query_by_index(1, 'cifar100')
print ('There are {:} trials for this architecture [{:}] on cifar100'.format(len(results), api[1]))
print ('Latency : {:}'.format(results[0].get_latency()))
print ('Train Info : {:}'.format(results[0].get_train()))
print ('Valid Info : {:}'.format(results[0].get_eval('x-valid')))
print ('Test Info : {:}'.format(results[0].get_eval('x-test')))
# for the metric after a specific epoch
print ('Train Info [10-th epoch] : {:}'.format(results[0].get_train(10)))
- Query the index of an architecture by string
index = api.query_index_by_arch('|nor_conv_3x3~0|+|nor_conv_3x3~0|avg_pool_3x3~1|+|skip_connect~0|nor_conv_3x3~1|skip_connect~2|')
api.show(index)
- For other usages, please see
lib/nas_102_api/api.py
Detailed Instruction
In nas_102_api
, we define three classes: NASBench102API
, ArchResults
, ResultsCount
.
ResultsCount
maintains all information of a specific trial. One can instantiate ResultsCount and get the info via the following codes (000157-FULL.pth
saves all information of all trials of 157-th architecture):
from nas_102_api import ResultsCount
xdata = torch.load('000157-FULL.pth')
odata = xdata['full']['all_results'][('cifar10-valid', 777)]
result = ResultsCount.create_from_state_dict( odata )
print(result) # print it
print(result.get_train()) # print the final training loss/accuracy/[optional:time-cost-of-a-training-epoch]
print(result.get_train(11)) # print the training info of the 11-th epoch
print(result.get_eval('x-valid')) # print the final evaluation info on the validation set
print(result.get_eval('x-valid', 11)) # print the info on the validation set of the 11-th epoch
print(result.get_latency()) # print the evaluation latency [in batch]
result.get_net_param() # the trained parameters of this trial
arch_config = result.get_config(CellStructure.str2structure) # create the network with params
net_config = dict2config(arch_config, None)
network = get_cell_based_tiny_net(net_config)
network.load_state_dict(result.get_net_param())
ArchResults
maintains all information of all trials of an architecture. Please see the following usages:
from nas_102_api import ArchResults
xdata = torch.load('000157-FULL.pth')
archRes = ArchResults.create_from_state_dict(xdata['less']) # load trials trained with 12 epochs
archRes = ArchResults.create_from_state_dict(xdata['full']) # load trials trained with 200 epochs
print(archRes.arch_idx_str()) # print the index of this architecture
print(archRes.get_dataset_names()) # print the supported training data
print(archRes.get_comput_costs('cifar10-valid')) # print all computational info when training on cifar10-valid
print(archRes.get_metrics('cifar10-valid', 'x-valid', None, False)) # print the average loss/accuracy/time on all trials
print(archRes.get_metrics('cifar10-valid', 'x-valid', None, True)) # print loss/accuracy/time of a randomly selected trial
NASBench102API
is the topest level api. Please see the following usages:
from nas_102_api import NASBench102API as API
api = API('NAS-Bench-102-v1_0-e61699.pth')
api.show(-1) # show info of all architectures
Instruction to Re-Generate NAS-Bench-102
- generate the meta file for NAS-Bench-102 using the following script, where
NAS-BENCH-102
indicates the name and4
indicates the maximum number of nodes in a cell.
bash scripts-search/NAS-Bench-102/meta-gen.sh NAS-BENCH-102 4
- train earch architecture on a single GPU (see commands in
output/NAS-BENCH-102-4/BENCH-102-N4.opt-full.script
, which is automatically generated by step-1).
CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/NAS-Bench-102/train-models.sh 0 0 389 -1 '777 888 999'
This command will train 390 architectures (id from 0 to 389) using the following four kinds of splits with three random seeds (777, 888, 999).
Dataset | Train | Eval |
---|---|---|
CIFAR-10 | train | valid / test |
CIFAR-10 | train + valid | test |
CIFAR-100 | train | valid / test |
ImageNet-16-120 | train | valid / test |
- calculate the latency, merge the results of all architectures, and simplify the results.
(see commands in
output/NAS-BENCH-102-4/meta-node-4.cal-script.txt
which is automatically generated by step-1).
OMP_NUM_THREADS=6 CUDA_VISIBLE_DEVICES=0 python exps/NAS-Bench-102/statistics.py --mode cal --target_dir 000000-000389-C16-N5
- merge all results into a single file for NAS-Bench-102-API.
OMP_NUM_THREADS=4 python exps/NAS-Bench-102/statistics.py --mode merge
This command will generate a single file output/NAS-BENCH-102-4/simplifies/C16-N5-final-infos.pth
contains all the data for NAS-Bench-102.
This generated file will serve as the input for our NAS-Bench-102 API.
[option] train a single architecture on a single GPU.
CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/NAS-Bench-102/train-a-net.sh resnet 16 5
CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/NAS-Bench-102/train-a-net.sh '|nor_conv_3x3~0|+|nor_conv_3x3~0|nor_conv_3x3~1|+|skip_connect~0|skip_connect~1|skip_connect~2|' 16 5
To Reproduce 10 Baseline NAS Algorithms in NAS-Bench-102
We have tried our best to implement each method. However, still, some algorithms might obtain non-optimal results since their hyper-parameters might not fit our NAS-Bench-102. If researchers can provide better results with different hyper-parameters, we are happy to update results according to the new experimental results. We also welcome more NAS algorithms to test on our dataset and would include them accordingly.
- [1]
CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V1.sh cifar10 -1
- [2]
CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V2.sh cifar10 -1
- [3]
CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/GDAS.sh cifar10 -1
- [4]
CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/SETN.sh cifar10 -1
- [5]
CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/ENAS.sh cifar10 -1
- [6]
CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/RANDOM-NAS.sh cifar10 -1
- [7]
bash ./scripts-search/algos/R-EA.sh -1
- [8]
bash ./scripts-search/algos/Random.sh -1
- [9]
bash ./scripts-search/algos/REINFORCE.sh -1
- [10]
bash ./scripts-search/algos/BOHB.sh -1