update
This commit is contained in:
parent
189df25fd3
commit
fd43e67da1
@ -96,20 +96,6 @@ def project_op(model, input, target, args, cell_type, proj_queue=None, selected_
|
|||||||
|
|
||||||
model.candidate_flags[cell_type][selected_eid] = False
|
model.candidate_flags[cell_type][selected_eid] = False
|
||||||
# print(model.get_projected_weights())
|
# print(model.get_projected_weights())
|
||||||
if proj_crit == 'comb':
|
|
||||||
synflow = predictive.find_measures(model,
|
|
||||||
proj_queue,
|
|
||||||
('random', 1, n_classes),
|
|
||||||
torch.device("cuda"),
|
|
||||||
measure_names=['synflow'])
|
|
||||||
var = predictive.find_measures(model,
|
|
||||||
proj_queue,
|
|
||||||
('random', 1, n_classes),
|
|
||||||
torch.device("cuda"),
|
|
||||||
measure_names=['var'])
|
|
||||||
# print(synflow, var)
|
|
||||||
comb = np.log(synflow['synflow'] + 1) / (var['var'] + 0.1)
|
|
||||||
measures = {'comb': comb}
|
|
||||||
else:
|
else:
|
||||||
measures = predictive.find_measures(model,
|
measures = predictive.find_measures(model,
|
||||||
proj_queue,
|
proj_queue,
|
||||||
|
@ -55,9 +55,6 @@ def load_all():
|
|||||||
from . import jacob_cov
|
from . import jacob_cov
|
||||||
from . import plain
|
from . import plain
|
||||||
from . import synflow
|
from . import synflow
|
||||||
from . import var
|
|
||||||
from . import cor
|
|
||||||
from . import norm
|
|
||||||
from . import meco
|
from . import meco
|
||||||
from . import zico
|
from . import zico
|
||||||
|
|
||||||
|
@ -1,53 +0,0 @@
|
|||||||
# Copyright 2021 Samsung Electronics Co., Ltd.
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
import time
|
|
||||||
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
# =============================================================================
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import torch
|
|
||||||
|
|
||||||
from . import measure
|
|
||||||
|
|
||||||
|
|
||||||
def get_score(net, x, target, device, split_data):
|
|
||||||
result_list = []
|
|
||||||
def forward_hook(module, data_input, data_output):
|
|
||||||
corr = np.mean(np.corrcoef(data_input[0].detach().cpu().numpy()))
|
|
||||||
result_list.append(corr)
|
|
||||||
net.classifier.register_forward_hook(forward_hook)
|
|
||||||
|
|
||||||
N = x.shape[0]
|
|
||||||
for sp in range(split_data):
|
|
||||||
st = sp * N // split_data
|
|
||||||
en = (sp + 1) * N // split_data
|
|
||||||
y = net(x[st:en])
|
|
||||||
cor = result_list[0].item()
|
|
||||||
result_list.clear()
|
|
||||||
return cor
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@measure('cor', bn=True)
|
|
||||||
def compute_norm(net, inputs, targets, split_data=1, loss_fn=None):
|
|
||||||
device = inputs.device
|
|
||||||
# Compute gradients (but don't apply them)
|
|
||||||
net.zero_grad()
|
|
||||||
|
|
||||||
try:
|
|
||||||
cor= get_score(net, inputs, targets, device, split_data=split_data)
|
|
||||||
except Exception as e:
|
|
||||||
print(e)
|
|
||||||
cor= np.nan
|
|
||||||
|
|
||||||
return cor
|
|
@ -1,55 +0,0 @@
|
|||||||
# Copyright 2021 Samsung Electronics Co., Ltd.
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
import time
|
|
||||||
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
# =============================================================================
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import torch
|
|
||||||
|
|
||||||
from . import measure
|
|
||||||
|
|
||||||
|
|
||||||
def get_score(net, x, target, device, split_data):
|
|
||||||
result_list = []
|
|
||||||
def forward_hook(module, data_input, data_output):
|
|
||||||
norm = torch.norm(data_input[0])
|
|
||||||
result_list.append(norm)
|
|
||||||
net.classifier.register_forward_hook(forward_hook)
|
|
||||||
|
|
||||||
N = x.shape[0]
|
|
||||||
for sp in range(split_data):
|
|
||||||
st = sp * N // split_data
|
|
||||||
en = (sp + 1) * N // split_data
|
|
||||||
y = net(x[st:en])
|
|
||||||
n = result_list[0].item()
|
|
||||||
result_list.clear()
|
|
||||||
return n
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@measure('norm', bn=True)
|
|
||||||
def compute_norm(net, inputs, targets, split_data=1, loss_fn=None):
|
|
||||||
device = inputs.device
|
|
||||||
# Compute gradients (but don't apply them)
|
|
||||||
net.zero_grad()
|
|
||||||
|
|
||||||
# print('var:', feature.shape)
|
|
||||||
try:
|
|
||||||
norm, t = get_score(net, inputs, targets, device, split_data=split_data)
|
|
||||||
except Exception as e:
|
|
||||||
print(e)
|
|
||||||
norm, t = np.nan, None
|
|
||||||
# print(jc)
|
|
||||||
# print(f'norm time: {t} s')
|
|
||||||
return norm, t
|
|
@ -1,16 +0,0 @@
|
|||||||
import time
|
|
||||||
import torch
|
|
||||||
|
|
||||||
from . import measure
|
|
||||||
from ..p_utils import get_layer_metric_array
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@measure('param_count', copy_net=False, mode='param')
|
|
||||||
def get_param_count_array(net, inputs, targets, mode, loss_fn, split_data=1):
|
|
||||||
s = time.time()
|
|
||||||
count = get_layer_metric_array(net, lambda l: torch.tensor(sum(p.numel() for p in l.parameters() if p.requires_grad)), mode=mode)
|
|
||||||
e = time.time()
|
|
||||||
t = e - s
|
|
||||||
# print(f'param_count time: {t} s')
|
|
||||||
return count, t
|
|
@ -1,55 +0,0 @@
|
|||||||
# Copyright 2021 Samsung Electronics Co., Ltd.
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
import time
|
|
||||||
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
# =============================================================================
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import torch
|
|
||||||
|
|
||||||
from . import measure
|
|
||||||
|
|
||||||
|
|
||||||
def get_score(net, x, target, device, split_data):
|
|
||||||
result_list = []
|
|
||||||
def forward_hook(module, data_input, data_output):
|
|
||||||
var = torch.var(data_input[0])
|
|
||||||
result_list.append(var)
|
|
||||||
net.classifier.register_forward_hook(forward_hook)
|
|
||||||
|
|
||||||
N = x.shape[0]
|
|
||||||
for sp in range(split_data):
|
|
||||||
st = sp * N // split_data
|
|
||||||
en = (sp + 1) * N // split_data
|
|
||||||
y = net(x[st:en])
|
|
||||||
v = result_list[0].item()
|
|
||||||
result_list.clear()
|
|
||||||
return v
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@measure('var', bn=True)
|
|
||||||
def compute_var(net, inputs, targets, split_data=1, loss_fn=None):
|
|
||||||
device = inputs.device
|
|
||||||
# Compute gradients (but don't apply them)
|
|
||||||
net.zero_grad()
|
|
||||||
|
|
||||||
# print('var:', feature.shape)
|
|
||||||
try:
|
|
||||||
var= get_score(net, inputs, targets, device, split_data=split_data)
|
|
||||||
except Exception as e:
|
|
||||||
print(e)
|
|
||||||
var= np.nan
|
|
||||||
# print(jc)
|
|
||||||
# print(f'var time: {t} s')
|
|
||||||
return var
|
|
@ -108,7 +108,7 @@ def find_measures(net_orig, # neural network
|
|||||||
|
|
||||||
measures = {}
|
measures = {}
|
||||||
for k,v in measures_arr.items():
|
for k,v in measures_arr.items():
|
||||||
if k in ['jacob_cov', 'var', 'cor', 'norm', 'meco', 'zico']:
|
if k in ['jacob_cov', 'meco', 'zico']:
|
||||||
measures[k] = v
|
measures[k] = v
|
||||||
else:
|
else:
|
||||||
measures[k] = sum_arr(v)
|
measures[k] = sum_arr(v)
|
||||||
|
@ -223,20 +223,6 @@ def main():
|
|||||||
else:
|
else:
|
||||||
#score = score_loop(network, None, train_queue, args.gpu, None, args.proj_crit)
|
#score = score_loop(network, None, train_queue, args.gpu, None, args.proj_crit)
|
||||||
network.requires_feature = False
|
network.requires_feature = False
|
||||||
|
|
||||||
if args.proj_crit == 'comb':
|
|
||||||
synflow = predictive.find_measures(network,
|
|
||||||
train_queue,
|
|
||||||
('random', 1, n_classes),
|
|
||||||
torch.device("cuda"),
|
|
||||||
measure_names=['synflow'])
|
|
||||||
var = predictive.find_measures(network,
|
|
||||||
train_queue,
|
|
||||||
('random', 1, n_classes),
|
|
||||||
torch.device("cuda"),
|
|
||||||
measure_names=['var'])
|
|
||||||
comb = np.log(synflow['synflow'] + 1) / (var['var'] + 0.1)
|
|
||||||
measures = {'comb': comb}
|
|
||||||
else:
|
else:
|
||||||
measures = predictive.find_measures(network,
|
measures = predictive.find_measures(network,
|
||||||
train_queue,
|
train_queue,
|
||||||
|
Loading…
Reference in New Issue
Block a user