MeCo/correlation/foresight/pruners/measures/pearson.py
HamsterMimi 3f6d16e791 update
2024-01-23 10:08:45 +08:00

72 lines
2.1 KiB
Python

# Copyright 2021 Samsung Electronics Co., Ltd.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
import copy
import time
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =============================================================================
import numpy as np
from torch import nn
# import pandas as pd
from . import measure
def get_score(net, x, target, device, split_data):
result_list = []
result_t = []
def forward_hook(module, data_input, data_output):
s = time.time()
fea = data_output[0].detach().cpu().numpy()
fea = fea.reshape(fea.shape[0], -1)
# result = 1 / np.var(np.corrcoef(fea))
result = np.var(np.corrcoef(fea))
e = time.time()
t = e - s
result_list.append(result)
result_t.append(t)
for name, modules in net.named_modules():
modules.register_forward_hook(forward_hook)
N = x.shape[0]
for sp in range(split_data):
st = sp * N // split_data
en = (sp + 1) * N // split_data
y = net(x[st:en])
# print(y)
results = np.array(result_list)
results = results[np.logical_not(np.isnan(results))]
v = np.sum(results)
t = sum(result_t)
result_list.clear()
result_t.clear()
return v, t
@measure('pearson', bn=True)
def compute_pearson(net, inputs, targets, split_data=1, loss_fn=None):
device = inputs.device
# Compute gradients (but don't apply them)
net.zero_grad()
try:
pearson, t = get_score(net, inputs, targets, device, split_data=split_data)
except Exception as e:
print(e)
pearson, t = np.nan, None
return pearson, t