467 lines
17 KiB
Python
467 lines
17 KiB
Python
##################################################
|
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
|
##################################################
|
|
import math, torch
|
|
import torch.nn as nn
|
|
from ..initialization import initialize_resnet
|
|
from ..SharedUtils import additive_func
|
|
from .SoftSelect import select2withP, ChannelWiseInter
|
|
from .SoftSelect import linear_forward
|
|
from .SoftSelect import get_width_choices as get_choices
|
|
|
|
|
|
def conv_forward(inputs, conv, choices):
|
|
iC = conv.in_channels
|
|
fill_size = list(inputs.size())
|
|
fill_size[1] = iC - fill_size[1]
|
|
filled = torch.zeros(fill_size, device=inputs.device)
|
|
xinputs = torch.cat((inputs, filled), dim=1)
|
|
outputs = conv(xinputs)
|
|
selecteds = [outputs[:, :oC] for oC in choices]
|
|
return selecteds
|
|
|
|
|
|
class ConvBNReLU(nn.Module):
|
|
num_conv = 1
|
|
|
|
def __init__(
|
|
self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu
|
|
):
|
|
super(ConvBNReLU, self).__init__()
|
|
self.InShape = None
|
|
self.OutShape = None
|
|
self.choices = get_choices(nOut)
|
|
self.register_buffer("choices_tensor", torch.Tensor(self.choices))
|
|
|
|
if has_avg:
|
|
self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
|
|
else:
|
|
self.avg = None
|
|
self.conv = nn.Conv2d(
|
|
nIn,
|
|
nOut,
|
|
kernel_size=kernel,
|
|
stride=stride,
|
|
padding=padding,
|
|
dilation=1,
|
|
groups=1,
|
|
bias=bias,
|
|
)
|
|
# if has_bn : self.bn = nn.BatchNorm2d(nOut)
|
|
# else : self.bn = None
|
|
self.has_bn = has_bn
|
|
self.BNs = nn.ModuleList()
|
|
for i, _out in enumerate(self.choices):
|
|
self.BNs.append(nn.BatchNorm2d(_out))
|
|
if has_relu:
|
|
self.relu = nn.ReLU(inplace=True)
|
|
else:
|
|
self.relu = None
|
|
self.in_dim = nIn
|
|
self.out_dim = nOut
|
|
self.search_mode = "basic"
|
|
|
|
def get_flops(self, channels, check_range=True, divide=1):
|
|
iC, oC = channels
|
|
if check_range:
|
|
assert (
|
|
iC <= self.conv.in_channels and oC <= self.conv.out_channels
|
|
), "{:} vs {:} | {:} vs {:}".format(
|
|
iC, self.conv.in_channels, oC, self.conv.out_channels
|
|
)
|
|
assert (
|
|
isinstance(self.InShape, tuple) and len(self.InShape) == 2
|
|
), "invalid in-shape : {:}".format(self.InShape)
|
|
assert (
|
|
isinstance(self.OutShape, tuple) and len(self.OutShape) == 2
|
|
), "invalid out-shape : {:}".format(self.OutShape)
|
|
# conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups
|
|
conv_per_position_flops = (
|
|
self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups
|
|
)
|
|
all_positions = self.OutShape[0] * self.OutShape[1]
|
|
flops = (conv_per_position_flops * all_positions / divide) * iC * oC
|
|
if self.conv.bias is not None:
|
|
flops += all_positions / divide
|
|
return flops
|
|
|
|
def get_range(self):
|
|
return [self.choices]
|
|
|
|
def forward(self, inputs):
|
|
if self.search_mode == "basic":
|
|
return self.basic_forward(inputs)
|
|
elif self.search_mode == "search":
|
|
return self.search_forward(inputs)
|
|
else:
|
|
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
|
|
|
|
def search_forward(self, tuple_inputs):
|
|
assert (
|
|
isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5
|
|
), "invalid type input : {:}".format(type(tuple_inputs))
|
|
inputs, expected_inC, probability, index, prob = tuple_inputs
|
|
index, prob = torch.squeeze(index).tolist(), torch.squeeze(prob)
|
|
probability = torch.squeeze(probability)
|
|
assert len(index) == 2, "invalid length : {:}".format(index)
|
|
# compute expected flop
|
|
# coordinates = torch.arange(self.x_range[0], self.x_range[1]+1).type_as(probability)
|
|
expected_outC = (self.choices_tensor * probability).sum()
|
|
expected_flop = self.get_flops([expected_inC, expected_outC], False, 1e6)
|
|
if self.avg:
|
|
out = self.avg(inputs)
|
|
else:
|
|
out = inputs
|
|
# convolutional layer
|
|
out_convs = conv_forward(out, self.conv, [self.choices[i] for i in index])
|
|
out_bns = [self.BNs[idx](out_conv) for idx, out_conv in zip(index, out_convs)]
|
|
# merge
|
|
out_channel = max([x.size(1) for x in out_bns])
|
|
outA = ChannelWiseInter(out_bns[0], out_channel)
|
|
outB = ChannelWiseInter(out_bns[1], out_channel)
|
|
out = outA * prob[0] + outB * prob[1]
|
|
# out = additive_func(out_bns[0]*prob[0], out_bns[1]*prob[1])
|
|
|
|
if self.relu:
|
|
out = self.relu(out)
|
|
else:
|
|
out = out
|
|
return out, expected_outC, expected_flop
|
|
|
|
def basic_forward(self, inputs):
|
|
if self.avg:
|
|
out = self.avg(inputs)
|
|
else:
|
|
out = inputs
|
|
conv = self.conv(out)
|
|
if self.has_bn:
|
|
out = self.BNs[-1](conv)
|
|
else:
|
|
out = conv
|
|
if self.relu:
|
|
out = self.relu(out)
|
|
else:
|
|
out = out
|
|
if self.InShape is None:
|
|
self.InShape = (inputs.size(-2), inputs.size(-1))
|
|
self.OutShape = (out.size(-2), out.size(-1))
|
|
return out
|
|
|
|
|
|
class SimBlock(nn.Module):
|
|
expansion = 1
|
|
num_conv = 1
|
|
|
|
def __init__(self, inplanes, planes, stride):
|
|
super(SimBlock, self).__init__()
|
|
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
|
|
self.conv = ConvBNReLU(
|
|
inplanes,
|
|
planes,
|
|
3,
|
|
stride,
|
|
1,
|
|
False,
|
|
has_avg=False,
|
|
has_bn=True,
|
|
has_relu=True,
|
|
)
|
|
if stride == 2:
|
|
self.downsample = ConvBNReLU(
|
|
inplanes,
|
|
planes,
|
|
1,
|
|
1,
|
|
0,
|
|
False,
|
|
has_avg=True,
|
|
has_bn=False,
|
|
has_relu=False,
|
|
)
|
|
elif inplanes != planes:
|
|
self.downsample = ConvBNReLU(
|
|
inplanes,
|
|
planes,
|
|
1,
|
|
1,
|
|
0,
|
|
False,
|
|
has_avg=False,
|
|
has_bn=True,
|
|
has_relu=False,
|
|
)
|
|
else:
|
|
self.downsample = None
|
|
self.out_dim = planes
|
|
self.search_mode = "basic"
|
|
|
|
def get_range(self):
|
|
return self.conv.get_range()
|
|
|
|
def get_flops(self, channels):
|
|
assert len(channels) == 2, "invalid channels : {:}".format(channels)
|
|
flop_A = self.conv.get_flops([channels[0], channels[1]])
|
|
if hasattr(self.downsample, "get_flops"):
|
|
flop_C = self.downsample.get_flops([channels[0], channels[-1]])
|
|
else:
|
|
flop_C = 0
|
|
if (
|
|
channels[0] != channels[-1] and self.downsample is None
|
|
): # this short-cut will be added during the infer-train
|
|
flop_C = (
|
|
channels[0]
|
|
* channels[-1]
|
|
* self.conv.OutShape[0]
|
|
* self.conv.OutShape[1]
|
|
)
|
|
return flop_A + flop_C
|
|
|
|
def forward(self, inputs):
|
|
if self.search_mode == "basic":
|
|
return self.basic_forward(inputs)
|
|
elif self.search_mode == "search":
|
|
return self.search_forward(inputs)
|
|
else:
|
|
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
|
|
|
|
def search_forward(self, tuple_inputs):
|
|
assert (
|
|
isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5
|
|
), "invalid type input : {:}".format(type(tuple_inputs))
|
|
inputs, expected_inC, probability, indexes, probs = tuple_inputs
|
|
assert (
|
|
indexes.size(0) == 1 and probs.size(0) == 1 and probability.size(0) == 1
|
|
), "invalid size : {:}, {:}, {:}".format(
|
|
indexes.size(), probs.size(), probability.size()
|
|
)
|
|
out, expected_next_inC, expected_flop = self.conv(
|
|
(inputs, expected_inC, probability[0], indexes[0], probs[0])
|
|
)
|
|
if self.downsample is not None:
|
|
residual, _, expected_flop_c = self.downsample(
|
|
(inputs, expected_inC, probability[-1], indexes[-1], probs[-1])
|
|
)
|
|
else:
|
|
residual, expected_flop_c = inputs, 0
|
|
out = additive_func(residual, out)
|
|
return (
|
|
nn.functional.relu(out, inplace=True),
|
|
expected_next_inC,
|
|
sum([expected_flop, expected_flop_c]),
|
|
)
|
|
|
|
def basic_forward(self, inputs):
|
|
basicblock = self.conv(inputs)
|
|
if self.downsample is not None:
|
|
residual = self.downsample(inputs)
|
|
else:
|
|
residual = inputs
|
|
out = additive_func(residual, basicblock)
|
|
return nn.functional.relu(out, inplace=True)
|
|
|
|
|
|
class SearchWidthSimResNet(nn.Module):
|
|
def __init__(self, depth, num_classes):
|
|
super(SearchWidthSimResNet, self).__init__()
|
|
|
|
assert (
|
|
depth - 2
|
|
) % 3 == 0, "depth should be one of 5, 8, 11, 14, ... instead of {:}".format(
|
|
depth
|
|
)
|
|
layer_blocks = (depth - 2) // 3
|
|
self.message = (
|
|
"SearchWidthSimResNet : Depth : {:} , Layers for each block : {:}".format(
|
|
depth, layer_blocks
|
|
)
|
|
)
|
|
self.num_classes = num_classes
|
|
self.channels = [16]
|
|
self.layers = nn.ModuleList(
|
|
[
|
|
ConvBNReLU(
|
|
3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True
|
|
)
|
|
]
|
|
)
|
|
self.InShape = None
|
|
for stage in range(3):
|
|
for iL in range(layer_blocks):
|
|
iC = self.channels[-1]
|
|
planes = 16 * (2 ** stage)
|
|
stride = 2 if stage > 0 and iL == 0 else 1
|
|
module = SimBlock(iC, planes, stride)
|
|
self.channels.append(module.out_dim)
|
|
self.layers.append(module)
|
|
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(
|
|
stage,
|
|
iL,
|
|
layer_blocks,
|
|
len(self.layers) - 1,
|
|
iC,
|
|
module.out_dim,
|
|
stride,
|
|
)
|
|
|
|
self.avgpool = nn.AvgPool2d(8)
|
|
self.classifier = nn.Linear(module.out_dim, num_classes)
|
|
self.InShape = None
|
|
self.tau = -1
|
|
self.search_mode = "basic"
|
|
# assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth)
|
|
|
|
# parameters for width
|
|
self.Ranges = []
|
|
self.layer2indexRange = []
|
|
for i, layer in enumerate(self.layers):
|
|
start_index = len(self.Ranges)
|
|
self.Ranges += layer.get_range()
|
|
self.layer2indexRange.append((start_index, len(self.Ranges)))
|
|
assert len(self.Ranges) + 1 == depth, "invalid depth check {:} vs {:}".format(
|
|
len(self.Ranges) + 1, depth
|
|
)
|
|
|
|
self.register_parameter(
|
|
"width_attentions",
|
|
nn.Parameter(torch.Tensor(len(self.Ranges), get_choices(None))),
|
|
)
|
|
nn.init.normal_(self.width_attentions, 0, 0.01)
|
|
self.apply(initialize_resnet)
|
|
|
|
def arch_parameters(self):
|
|
return [self.width_attentions]
|
|
|
|
def base_parameters(self):
|
|
return (
|
|
list(self.layers.parameters())
|
|
+ list(self.avgpool.parameters())
|
|
+ list(self.classifier.parameters())
|
|
)
|
|
|
|
def get_flop(self, mode, config_dict, extra_info):
|
|
if config_dict is not None:
|
|
config_dict = config_dict.copy()
|
|
# weights = [F.softmax(x, dim=0) for x in self.width_attentions]
|
|
channels = [3]
|
|
for i, weight in enumerate(self.width_attentions):
|
|
if mode == "genotype":
|
|
with torch.no_grad():
|
|
probe = nn.functional.softmax(weight, dim=0)
|
|
C = self.Ranges[i][torch.argmax(probe).item()]
|
|
elif mode == "max":
|
|
C = self.Ranges[i][-1]
|
|
elif mode == "fix":
|
|
C = int(math.sqrt(extra_info) * self.Ranges[i][-1])
|
|
elif mode == "random":
|
|
assert isinstance(extra_info, float), "invalid extra_info : {:}".format(
|
|
extra_info
|
|
)
|
|
with torch.no_grad():
|
|
prob = nn.functional.softmax(weight, dim=0)
|
|
approximate_C = int(math.sqrt(extra_info) * self.Ranges[i][-1])
|
|
for j in range(prob.size(0)):
|
|
prob[j] = 1 / (
|
|
abs(j - (approximate_C - self.Ranges[i][j])) + 0.2
|
|
)
|
|
C = self.Ranges[i][torch.multinomial(prob, 1, False).item()]
|
|
else:
|
|
raise ValueError("invalid mode : {:}".format(mode))
|
|
channels.append(C)
|
|
flop = 0
|
|
for i, layer in enumerate(self.layers):
|
|
s, e = self.layer2indexRange[i]
|
|
xchl = tuple(channels[s : e + 1])
|
|
flop += layer.get_flops(xchl)
|
|
# the last fc layer
|
|
flop += channels[-1] * self.classifier.out_features
|
|
if config_dict is None:
|
|
return flop / 1e6
|
|
else:
|
|
config_dict["xchannels"] = channels
|
|
config_dict["super_type"] = "infer-width"
|
|
config_dict["estimated_FLOP"] = flop / 1e6
|
|
return flop / 1e6, config_dict
|
|
|
|
def get_arch_info(self):
|
|
string = "for width, there are {:} attention probabilities.".format(
|
|
len(self.width_attentions)
|
|
)
|
|
discrepancy = []
|
|
with torch.no_grad():
|
|
for i, att in enumerate(self.width_attentions):
|
|
prob = nn.functional.softmax(att, dim=0)
|
|
prob = prob.cpu()
|
|
selc = prob.argmax().item()
|
|
prob = prob.tolist()
|
|
prob = ["{:.3f}".format(x) for x in prob]
|
|
xstring = "{:03d}/{:03d}-th : {:}".format(
|
|
i, len(self.width_attentions), " ".join(prob)
|
|
)
|
|
logt = ["{:.3f}".format(x) for x in att.cpu().tolist()]
|
|
xstring += " || {:52s}".format(" ".join(logt))
|
|
prob = sorted([float(x) for x in prob])
|
|
disc = prob[-1] - prob[-2]
|
|
xstring += " || dis={:.2f} || select={:}/{:}".format(
|
|
disc, selc, len(prob)
|
|
)
|
|
discrepancy.append(disc)
|
|
string += "\n{:}".format(xstring)
|
|
return string, discrepancy
|
|
|
|
def set_tau(self, tau_max, tau_min, epoch_ratio):
|
|
assert (
|
|
epoch_ratio >= 0 and epoch_ratio <= 1
|
|
), "invalid epoch-ratio : {:}".format(epoch_ratio)
|
|
tau = tau_min + (tau_max - tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2
|
|
self.tau = tau
|
|
|
|
def get_message(self):
|
|
return self.message
|
|
|
|
def forward(self, inputs):
|
|
if self.search_mode == "basic":
|
|
return self.basic_forward(inputs)
|
|
elif self.search_mode == "search":
|
|
return self.search_forward(inputs)
|
|
else:
|
|
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
|
|
|
|
def search_forward(self, inputs):
|
|
flop_probs = nn.functional.softmax(self.width_attentions, dim=1)
|
|
selected_widths, selected_probs = select2withP(self.width_attentions, self.tau)
|
|
with torch.no_grad():
|
|
selected_widths = selected_widths.cpu()
|
|
|
|
x, last_channel_idx, expected_inC, flops = inputs, 0, 3, []
|
|
for i, layer in enumerate(self.layers):
|
|
selected_w_index = selected_widths[
|
|
last_channel_idx : last_channel_idx + layer.num_conv
|
|
]
|
|
selected_w_probs = selected_probs[
|
|
last_channel_idx : last_channel_idx + layer.num_conv
|
|
]
|
|
layer_prob = flop_probs[
|
|
last_channel_idx : last_channel_idx + layer.num_conv
|
|
]
|
|
x, expected_inC, expected_flop = layer(
|
|
(x, expected_inC, layer_prob, selected_w_index, selected_w_probs)
|
|
)
|
|
last_channel_idx += layer.num_conv
|
|
flops.append(expected_flop)
|
|
flops.append(expected_inC * (self.classifier.out_features * 1.0 / 1e6))
|
|
features = self.avgpool(x)
|
|
features = features.view(features.size(0), -1)
|
|
logits = linear_forward(features, self.classifier)
|
|
return logits, torch.stack([sum(flops)])
|
|
|
|
def basic_forward(self, inputs):
|
|
if self.InShape is None:
|
|
self.InShape = (inputs.size(-2), inputs.size(-1))
|
|
x = inputs
|
|
for i, layer in enumerate(self.layers):
|
|
x = layer(x)
|
|
features = self.avgpool(x)
|
|
features = features.view(features.size(0), -1)
|
|
logits = self.classifier(features)
|
|
return features, logits
|