fixed problems with variational dropout
This commit is contained in:
		@@ -4,6 +4,8 @@ This repository contains the source code for our paper:
 | 
			
		||||
[RAFT: Recurrent All Pairs Field Transforms for Optical Flow](https://arxiv.org/pdf/2003.12039.pdf)<br/>
 | 
			
		||||
Zachary Teed and Jia Deng<br/>
 | 
			
		||||
 | 
			
		||||
<img src="RAFT.png">
 | 
			
		||||
 | 
			
		||||
## Requirements
 | 
			
		||||
Our code was tested using PyTorch 1.3.1 and Python 3. The following additional packages need to be installed
 | 
			
		||||
 | 
			
		||||
@@ -84,11 +86,11 @@ python train.py --name=kitti_ft --image_size 288 896 --dataset=kitti --num_steps
 | 
			
		||||
You can evaluate a model on Sintel and KITTI by running
 | 
			
		||||
 | 
			
		||||
```Shell
 | 
			
		||||
python evaluate.py --model=checkpoints/chairs+things.pth
 | 
			
		||||
python evaluate.py --model=models/chairs+things.pth
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
or the small model by including the `small` flag
 | 
			
		||||
 | 
			
		||||
```Shell
 | 
			
		||||
python evaluate.py --model=checkpoints/small.pth --small
 | 
			
		||||
python evaluate.py --model=models/small.pth --small
 | 
			
		||||
```
 | 
			
		||||
 
 | 
			
		||||
@@ -133,8 +133,20 @@ class SmallUpdateBlock(nn.Module):
 | 
			
		||||
        self.gru = ConvGRU(hidden_dim=hidden_dim, input_dim=82+64)
 | 
			
		||||
        self.flow_head = FlowHead(hidden_dim, hidden_dim=128)
 | 
			
		||||
 | 
			
		||||
        self.drop_inp = VariationalHidDropout(dropout=args.dropout)
 | 
			
		||||
        self.drop_net = VariationalHidDropout(dropout=args.dropout)
 | 
			
		||||
 | 
			
		||||
    def reset_mask(self, net, inp):
 | 
			
		||||
        self.drop_inp.reset_mask(inp)
 | 
			
		||||
        self.drop_net.reset_mask(net)
 | 
			
		||||
 | 
			
		||||
    def forward(self, net, inp, corr, flow):
 | 
			
		||||
        motion_features = self.encoder(flow, corr)
 | 
			
		||||
 | 
			
		||||
        if self.training:
 | 
			
		||||
            net = self.drop_net(net)
 | 
			
		||||
            inp = self.drop_inp(inp)
 | 
			
		||||
 | 
			
		||||
        inp = torch.cat([inp, motion_features], dim=1)
 | 
			
		||||
        net = self.gru(net, inp)
 | 
			
		||||
        delta_flow = self.flow_head(net)
 | 
			
		||||
@@ -157,12 +169,12 @@ class BasicUpdateBlock(nn.Module):
 | 
			
		||||
 | 
			
		||||
    def forward(self, net, inp, corr, flow):
 | 
			
		||||
        motion_features = self.encoder(flow, corr)
 | 
			
		||||
        inp = torch.cat([inp, motion_features], dim=1)
 | 
			
		||||
 | 
			
		||||
        if self.training:
 | 
			
		||||
            net = self.drop_net(net)
 | 
			
		||||
            inp = self.drop_inp(inp)
 | 
			
		||||
 | 
			
		||||
        
 | 
			
		||||
        inp = torch.cat([inp, motion_features], dim=1)
 | 
			
		||||
        net = self.gru(net, inp)
 | 
			
		||||
        delta_flow = self.flow_head(net)
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -26,7 +26,7 @@ class RAFT(nn.Module):
 | 
			
		||||
            args.corr_levels = 4
 | 
			
		||||
            args.corr_radius = 4
 | 
			
		||||
 | 
			
		||||
        if 'dropout' not in args._get_kwargs():
 | 
			
		||||
        if not hasattr(args, 'dropout'):
 | 
			
		||||
            args.dropout = 0
 | 
			
		||||
 | 
			
		||||
        # feature network, context network, and update block
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										6
									
								
								train.py
									
									
									
									
									
								
							
							
						
						
									
										6
									
								
								train.py
									
									
									
									
									
								
							@@ -21,7 +21,7 @@ import datasets
 | 
			
		||||
 | 
			
		||||
# exclude extremly large displacements
 | 
			
		||||
MAX_FLOW = 1000
 | 
			
		||||
SUM_FREQ = 100
 | 
			
		||||
SUM_FREQ = 200
 | 
			
		||||
VAL_FREQ = 5000
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -56,7 +56,7 @@ def sequence_loss(flow_preds, flow_gt, valid):
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def fetch_dataloader(args):
 | 
			
		||||
    """ Create the data loader for the corresponding trainign set """
 | 
			
		||||
    """ Create the data loader for the corresponding training set """
 | 
			
		||||
 | 
			
		||||
    if args.dataset == 'chairs':
 | 
			
		||||
        train_dataset = datasets.FlyingChairs(args, image_size=args.image_size)
 | 
			
		||||
@@ -86,7 +86,7 @@ def fetch_optimizer(args, model):
 | 
			
		||||
    optimizer = optim.AdamW(model.parameters(), lr=args.lr, weight_decay=args.wdecay, eps=args.epsilon)
 | 
			
		||||
 | 
			
		||||
    scheduler = optim.lr_scheduler.OneCycleLR(optimizer, args.lr, args.num_steps,
 | 
			
		||||
        pct_start=0.2, cycle_momentum=False, anneal_strategy='linear', final_div_factor=1.0)
 | 
			
		||||
        pct_start=0.2, cycle_momentum=False, anneal_strategy='linear')
 | 
			
		||||
 | 
			
		||||
    return optimizer, scheduler
 | 
			
		||||
    
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user