fixed problems with variational dropout
This commit is contained in:
@@ -4,6 +4,8 @@ This repository contains the source code for our paper:
|
||||
[RAFT: Recurrent All Pairs Field Transforms for Optical Flow](https://arxiv.org/pdf/2003.12039.pdf)<br/>
|
||||
Zachary Teed and Jia Deng<br/>
|
||||
|
||||
<img src="RAFT.png">
|
||||
|
||||
## Requirements
|
||||
Our code was tested using PyTorch 1.3.1 and Python 3. The following additional packages need to be installed
|
||||
|
||||
@@ -84,11 +86,11 @@ python train.py --name=kitti_ft --image_size 288 896 --dataset=kitti --num_steps
|
||||
You can evaluate a model on Sintel and KITTI by running
|
||||
|
||||
```Shell
|
||||
python evaluate.py --model=checkpoints/chairs+things.pth
|
||||
python evaluate.py --model=models/chairs+things.pth
|
||||
```
|
||||
|
||||
or the small model by including the `small` flag
|
||||
|
||||
```Shell
|
||||
python evaluate.py --model=checkpoints/small.pth --small
|
||||
python evaluate.py --model=models/small.pth --small
|
||||
```
|
||||
|
Reference in New Issue
Block a user