2019-04-04 10:51:45 +02:00
## [Searching for A Robust Neural Architecture in Four GPU Hours](http://xuanyidong.com/publication/gradient-based-diff-sampler/)
2019-01-31 15:27:38 +01:00
2019-04-16 17:36:16 +02:00
We propose A Gradient-based neural architecture search approach using Differentiable Architecture Sampler (GDAS). Please find details in [our paper ](https://github.com/D-X-Y/GDAS/blob/master/data/GDAS.pdf ).
2019-01-31 15:27:38 +01:00
2019-04-02 11:06:25 +02:00
< img src = "data/GDAS.png" width = "520" >
Figure-1. We utilize a DAG to represent the search space of a neural cell. Different operations (colored arrows) transform one node (square) to its intermediate features (little circles). Meanwhile, each node is the sum of the intermediate features transformed from the previous nodes. As indicated by the solid connections, the neural cell in the proposed GDAS is a sampled sub-graph of this DAG. Specifically, among the intermediate features between every two nodes, GDAS samples one feature in a differentiable way.
### Requirements
2019-03-31 16:49:43 +02:00
- PyTorch 1.0.1
2019-01-31 15:27:38 +01:00
- Python 3.6
2019-01-31 18:03:35 +01:00
- opencv
2019-01-31 15:27:38 +01:00
```
conda install pytorch torchvision cuda100 -c pytorch
```
2019-04-02 11:06:25 +02:00
### Usages
2019-01-31 15:27:38 +01:00
2019-01-31 17:23:55 +01:00
Train the searched CNN on CIFAR
```
2019-03-30 06:38:15 +01:00
CUDA_VISIBLE_DEVICES=0 bash ./scripts-cnn/train-cifar.sh GDAS_FG cifar10 cut
CUDA_VISIBLE_DEVICES=0 bash ./scripts-cnn/train-cifar.sh GDAS_F1 cifar10 cut
CUDA_VISIBLE_DEVICES=0 bash ./scripts-cnn/train-cifar.sh GDAS_V1 cifar100 cut
2019-01-31 17:23:55 +01:00
```
Train the searched CNN on ImageNet
```
2019-04-10 08:31:02 +02:00
CUDA_VISIBLE_DEVICES=0,1,2,3 bash ./scripts-cnn/train-imagenet.sh GDAS_F1 52 14 B128 -1
CUDA_VISIBLE_DEVICES=0,1,2,3 bash ./scripts-cnn/train-imagenet.sh GDAS_V1 50 14 B256 -1
2019-01-31 17:23:55 +01:00
```
2019-03-31 16:49:43 +02:00
Evaluate a trained CNN model
```
CUDA_VISIBLE_DEVICES=0 python ./exps-cnn/evaluate.py --data_path $TORCH_HOME/cifar.python --checkpoint ${checkpoint-path}
CUDA_VISIBLE_DEVICES=0 python ./exps-cnn/evaluate.py --data_path $TORCH_HOME/ILSVRC2012 --checkpoint ${checkpoint-path}
2019-04-10 08:35:20 +02:00
CUDA_VISIBLE_DEVICES=0 python ./exps-cnn/evaluate.py --data_path $TORCH_HOME/ILSVRC2012 --checkpoint GDAS-V1-C50-N14-ImageNet.pth
2019-03-31 16:49:43 +02:00
```
2019-01-31 17:23:55 +01:00
Train the searched RNN
2019-01-31 16:40:20 +01:00
```
2019-03-29 17:50:18 +01:00
CUDA_VISIBLE_DEVICES=0 bash ./scripts-rnn/train-PTB.sh DARTS_V1
CUDA_VISIBLE_DEVICES=0 bash ./scripts-rnn/train-PTB.sh DARTS_V2
CUDA_VISIBLE_DEVICES=0 bash ./scripts-rnn/train-PTB.sh GDAS
CUDA_VISIBLE_DEVICES=0 bash ./scripts-rnn/train-WT2.sh DARTS_V1
CUDA_VISIBLE_DEVICES=0 bash ./scripts-rnn/train-WT2.sh DARTS_V2
CUDA_VISIBLE_DEVICES=0 bash ./scripts-rnn/train-WT2.sh GDAS
2019-01-31 16:40:20 +01:00
```
2019-03-31 16:49:43 +02:00
2019-04-02 11:06:25 +02:00
### Training Logs
2019-04-10 13:13:29 +02:00
You can find some training logs in [`./data/logs/` ](https://github.com/D-X-Y/GDAS/tree/master/data/logs ).
You can also find some pre-trained models in [Google Driver ](https://drive.google.com/open?id=1Ofhc49xC1PLIX4O708gJZ1ugzz4td_RJ ).
2019-04-01 16:24:56 +02:00
2019-04-02 11:06:25 +02:00
### Experimental Results
2019-04-10 08:35:20 +02:00
< img src = "data/imagenet-results.png" width = "700" >
2019-04-10 13:13:29 +02:00
Figure-2. Top-1 and top-5 errors on ImageNet.
2019-04-02 11:06:25 +02:00
### Citation
2019-04-10 08:35:20 +02:00
If you find that this project (GDAS) helps your research, please cite the paper:
2019-03-31 16:49:43 +02:00
```
@inproceedings {dong2019search,
title={Searching for A Robust Neural Architecture in Four GPU Hours},
author={Dong, Xuanyi and Yang, Yi},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2019}
}
```