ddpo-pytorch/config/base.py

55 lines
1.4 KiB
Python
Raw Normal View History

2023-06-24 04:25:54 +02:00
import ml_collections
def get_config():
config = ml_collections.ConfigDict()
# misc
config.seed = 42
config.logdir = "logs"
config.num_epochs = 100
config.mixed_precision = "fp16"
config.allow_tf32 = True
config.use_lora = True
2023-06-24 04:25:54 +02:00
# pretrained model initialization
config.pretrained = pretrained = ml_collections.ConfigDict()
pretrained.model = "runwayml/stable-diffusion-v1-5"
pretrained.revision = "main"
# training
config.train = train = ml_collections.ConfigDict()
train.batch_size = 1
train.use_8bit_adam = False
train.learning_rate = 1e-4
train.adam_beta1 = 0.9
train.adam_beta2 = 0.999
2023-06-24 06:08:32 +02:00
train.adam_weight_decay = 1e-4
2023-06-24 04:25:54 +02:00
train.adam_epsilon = 1e-8
2023-06-24 09:07:55 +02:00
train.gradient_accumulation_steps = 1
2023-06-24 04:25:54 +02:00
train.max_grad_norm = 1.0
train.num_inner_epochs = 1
train.cfg = True
train.adv_clip_max = 10
train.clip_range = 1e-4
# sampling
config.sample = sample = ml_collections.ConfigDict()
sample.num_steps = 5
2023-06-24 04:25:54 +02:00
sample.eta = 1.0
sample.guidance_scale = 5.0
2023-06-24 09:07:55 +02:00
sample.batch_size = 1
sample.num_batches_per_epoch = 1
2023-06-24 04:25:54 +02:00
# prompting
config.prompt_fn = "imagenet_animals"
config.prompt_fn_kwargs = {}
# rewards
config.reward_fn = "jpeg_compressibility"
config.per_prompt_stat_tracking = ml_collections.ConfigDict()
2023-06-24 06:08:32 +02:00
config.per_prompt_stat_tracking.buffer_size = 64
2023-06-24 04:25:54 +02:00
config.per_prompt_stat_tracking.min_count = 16
return config