Working on DGX

This commit is contained in:
Kevin Black 2023-06-24 00:07:55 -07:00
parent 92fc030123
commit c680890d5c
5 changed files with 67 additions and 39 deletions

View File

@ -18,7 +18,6 @@ def get_config():
# training
config.train = train = ml_collections.ConfigDict()
train.mixed_precision = "fp16"
train.batch_size = 1
train.use_8bit_adam = False
train.scale_lr = False
@ -27,7 +26,7 @@ def get_config():
train.adam_beta2 = 0.999
train.adam_weight_decay = 1e-4
train.adam_epsilon = 1e-8
train.gradient_accumulation_steps = 32
train.gradient_accumulation_steps = 1
train.max_grad_norm = 1.0
train.num_inner_epochs = 1
train.cfg = True
@ -39,8 +38,8 @@ def get_config():
sample.num_steps = 30
sample.eta = 1.0
sample.guidance_scale = 5.0
sample.batch_size = 4
sample.num_batches_per_epoch = 8
sample.batch_size = 1
sample.num_batches_per_epoch = 1
# prompting
config.prompt_fn = "imagenet_animals"

View File

@ -0,0 +1,20 @@
import ml_collections
from ddpo_pytorch.config import base
def get_config():
config = base.get_config()
config.mixed_precision = "bf16"
config.allow_tf32 = True
config.train.batch_size = 8
config.train.gradient_accumulation_steps = 4
# sampling
config.sample.num_steps = 50
config.sample.batch_size = 8
config.sample.num_batches_per_epoch = 4
config.per_prompt_stat_tracking = None
return config

View File

@ -14,6 +14,11 @@ from diffusers.utils import randn_tensor
from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput, DDIMScheduler
def _left_broadcast(t, shape):
assert t.ndim <= len(shape)
return t.reshape(t.shape + (1,) * (len(shape) - t.ndim)).broadcast_to(shape)
def _get_variance(self, timestep, prev_timestep):
alpha_prod_t = torch.gather(self.alphas_cumprod, 0, timestep.cpu()).to(timestep.device)
alpha_prod_t_prev = torch.where(
@ -82,13 +87,16 @@ def ddim_step_with_logprob(
# 1. get previous step value (=t-1)
prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps
# to prevent OOB on gather
prev_timestep = torch.clamp(prev_timestep, 0, self.config.num_train_timesteps - 1)
# 2. compute alphas, betas
alpha_prod_t = self.alphas_cumprod.gather(0, timestep.cpu()).to(timestep.device)
alpha_prod_t = self.alphas_cumprod.gather(0, timestep.cpu())
alpha_prod_t_prev = torch.where(
prev_timestep.cpu() >= 0, self.alphas_cumprod.gather(0, prev_timestep.cpu()), self.final_alpha_cumprod
).to(timestep.device)
)
alpha_prod_t = _left_broadcast(alpha_prod_t, sample.shape).to(sample.device)
alpha_prod_t_prev = _left_broadcast(alpha_prod_t_prev, sample.shape).to(sample.device)
beta_prod_t = 1 - alpha_prod_t
@ -121,6 +129,7 @@ def ddim_step_with_logprob(
# σ_t = sqrt((1 α_t1)/(1 α_t)) * sqrt(1 α_t/α_t1)
variance = _get_variance(self, timestep, prev_timestep)
std_dev_t = eta * variance ** (0.5)
std_dev_t = _left_broadcast(std_dev_t, sample.shape).to(sample.device)
if use_clipped_model_output:
# the pred_epsilon is always re-derived from the clipped x_0 in Glide
@ -153,4 +162,4 @@ def ddim_step_with_logprob(
# mean along all but batch dimension
log_prob = log_prob.mean(dim=tuple(range(1, log_prob.ndim)))
return prev_sample, log_prob
return prev_sample.type(sample.dtype), log_prob

View File

@ -1,3 +1,4 @@
from collections import defaultdict
from absl import app, flags, logging
from ml_collections import config_flags
from accelerate import Accelerator
@ -6,6 +7,7 @@ from accelerate.logging import get_logger
from diffusers import StableDiffusionPipeline, DDIMScheduler
from diffusers.loaders import AttnProcsLayers
from diffusers.models.attention_processor import LoRAAttnProcessor
import numpy as np
import ddpo_pytorch.prompts
import ddpo_pytorch.rewards
from ddpo_pytorch.stat_tracking import PerPromptStatTracker
@ -20,7 +22,7 @@ tqdm = partial(tqdm.tqdm, dynamic_ncols=True)
FLAGS = flags.FLAGS
config_flags.DEFINE_config_file("config", "config/base.py", "Training configuration.")
config_flags.DEFINE_config_file("config", "ddpo_pytorch/config/base.py", "Training configuration.")
logger = get_logger(__name__)
@ -32,9 +34,10 @@ def main(_):
log_with="wandb",
mixed_precision=config.mixed_precision,
project_dir=config.logdir,
gradient_accumulation_steps=config.train.gradient_accumulation_steps * config.sample.num_steps,
)
if accelerator.is_main_process:
accelerator.init_trackers(project_name="ddpo-pytorch", config=config)
accelerator.init_trackers(project_name="ddpo-pytorch", config=config.to_dict())
logger.info(config)
# set seed
@ -93,14 +96,6 @@ def main(_):
if config.allow_tf32:
torch.backends.cuda.matmul.allow_tf32 = True
if config.train.scale_lr:
config.train.learning_rate = (
config.train.learning_rate
* config.train.gradient_accumulation_steps
* config.train.batch_size
* accelerator.num_processes
)
# Initialize the optimizer
if config.train.use_8bit_adam:
try:
@ -135,9 +130,6 @@ def main(_):
config.train.batch_size * accelerator.num_processes * config.train.gradient_accumulation_steps
)
assert config.sample.batch_size % config.train.batch_size == 0
assert samples_per_epoch % total_train_batch_size == 0
logger.info("***** Running training *****")
logger.info(f" Num Epochs = {config.num_epochs}")
logger.info(f" Sample batch size per device = {config.sample.batch_size}")
@ -149,6 +141,9 @@ def main(_):
logger.info(f" Number of gradient updates per inner epoch = {samples_per_epoch // total_train_batch_size}")
logger.info(f" Number of inner epochs = {config.train.num_inner_epochs}")
assert config.sample.batch_size % config.train.batch_size == 0
assert samples_per_epoch % total_train_batch_size == 0
neg_prompt_embed = pipeline.text_encoder(
pipeline.tokenizer(
[""],
@ -237,6 +232,8 @@ def main(_):
{"images": [wandb.Image(image, caption=prompt) for image, prompt in zip(images, prompts)]},
step=global_step,
)
# from PIL import Image
# Image.fromarray((images[0].cpu().numpy().transpose(1, 2, 0) * 255).astype(np.uint8)).save(f"test.png")
# per-prompt mean/std tracking
if config.per_prompt_stat_tracking:
@ -267,12 +264,6 @@ def main(_):
indices = torch.randperm(total_batch_size, device=accelerator.device)
samples = {k: v[indices] for k, v in samples.items()}
# shuffle along time dimension, independently for each sample
for i in range(total_batch_size):
indices = torch.randperm(num_timesteps, device=accelerator.device)
for key in ["timesteps", "latents", "next_latents"]:
samples[key][i] = samples[key][i][indices]
# rebatch for training
samples_batched = {k: v.reshape(-1, config.train.batch_size, *v.shape[1:]) for k, v in samples.items()}
@ -292,6 +283,7 @@ def main(_):
else:
embeds = sample["prompt_embeds"]
info = defaultdict(list)
for j in tqdm(
range(num_timesteps),
desc=f"Timestep",
@ -335,18 +327,12 @@ def main(_):
loss = torch.mean(torch.maximum(unclipped_loss, clipped_loss))
# debugging values
info = {}
# John Schulman says that (ratio - 1) - log(ratio) is a better
# estimator, but most existing code uses this so...
# http://joschu.net/blog/kl-approx.html
info["approx_kl"] = 0.5 * torch.mean((log_prob - sample["log_probs"][:, j]) ** 2)
info["clipfrac"] = torch.mean((torch.abs(ratio - 1.0) > config.train.clip_range).float())
info["loss"] = loss
# log training-related stuff
info.update({"epoch": epoch, "inner_epoch": inner_epoch, "timestep": j})
accelerator.log(info, step=global_step)
global_step += 1
info["approx_kl"].append(0.5 * torch.mean((log_prob - sample["log_probs"][:, j]) ** 2))
info["clipfrac"].append(torch.mean((torch.abs(ratio - 1.0) > config.train.clip_range).float()))
info["loss"].append(loss)
# backward pass
accelerator.backward(loss)
@ -355,6 +341,14 @@ def main(_):
optimizer.step()
optimizer.zero_grad()
if accelerator.sync_gradients:
# log training-related stuff
info = {k: torch.mean(torch.stack(v)) for k, v in info.items()}
info.update({"epoch": epoch, "inner_epoch": inner_epoch})
accelerator.log(info, step=global_step)
global_step += 1
info = defaultdict(list)
if __name__ == "__main__":
app.run(main)

View File

@ -1,10 +1,16 @@
from setuptools import setup, find_packages
setup(
name='ddpo-pytorch',
version='0.0.1',
name="ddpo-pytorch",
version="0.0.1",
packages=["ddpo_pytorch"],
install_requires=[
"ml-collections", "absl-py"
"ml-collections",
"absl-py",
"diffusers[torch]==0.17.1",
"wandb",
"torchvision",
"inflect==6.0.4",
"transformers==4.30.2",
],
)
)