2020-07-13 12:04:52 +02:00
|
|
|
###############################################################
|
|
|
|
# NAS-Bench-201, ICLR 2020 (https://arxiv.org/abs/2001.00326) #
|
|
|
|
###############################################################
|
|
|
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.06 #
|
|
|
|
###############################################################
|
2020-07-30 15:07:11 +02:00
|
|
|
# Usage: python exps/experimental/vis-nats-bench-algos.py --search_space tss
|
|
|
|
# Usage: python exps/experimental/vis-nats-bench-algos.py --search_space sss
|
2020-07-13 12:04:52 +02:00
|
|
|
###############################################################
|
2020-07-14 13:53:21 +02:00
|
|
|
import os, gc, sys, time, torch, argparse
|
2020-07-13 12:04:52 +02:00
|
|
|
import numpy as np
|
|
|
|
from typing import List, Text, Dict, Any
|
|
|
|
from shutil import copyfile
|
|
|
|
from collections import defaultdict, OrderedDict
|
2021-03-17 10:25:58 +01:00
|
|
|
from copy import deepcopy
|
2020-07-13 12:04:52 +02:00
|
|
|
from pathlib import Path
|
|
|
|
import matplotlib
|
|
|
|
import seaborn as sns
|
2021-03-17 10:25:58 +01:00
|
|
|
|
|
|
|
matplotlib.use("agg")
|
2020-07-13 12:04:52 +02:00
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
import matplotlib.ticker as ticker
|
|
|
|
|
2021-03-17 10:25:58 +01:00
|
|
|
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
|
|
|
|
if str(lib_dir) not in sys.path:
|
|
|
|
sys.path.insert(0, str(lib_dir))
|
2020-07-13 12:04:52 +02:00
|
|
|
from config_utils import dict2config, load_config
|
2020-07-30 15:07:11 +02:00
|
|
|
from nats_bench import create
|
2020-07-13 12:04:52 +02:00
|
|
|
from log_utils import time_string
|
|
|
|
|
|
|
|
|
2021-03-17 10:25:58 +01:00
|
|
|
def fetch_data(root_dir="./output/search", search_space="tss", dataset=None):
|
|
|
|
ss_dir = "{:}-{:}".format(root_dir, search_space)
|
|
|
|
alg2name, alg2path = OrderedDict(), OrderedDict()
|
|
|
|
alg2name["REA"] = "R-EA-SS3"
|
|
|
|
alg2name["REINFORCE"] = "REINFORCE-0.01"
|
|
|
|
alg2name["RANDOM"] = "RANDOM"
|
|
|
|
alg2name["BOHB"] = "BOHB"
|
|
|
|
for alg, name in alg2name.items():
|
|
|
|
alg2path[alg] = os.path.join(ss_dir, dataset, name, "results.pth")
|
|
|
|
assert os.path.isfile(alg2path[alg]), "invalid path : {:}".format(alg2path[alg])
|
|
|
|
alg2data = OrderedDict()
|
|
|
|
for alg, path in alg2path.items():
|
|
|
|
data = torch.load(path)
|
|
|
|
for index, info in data.items():
|
2021-03-18 09:02:55 +01:00
|
|
|
info["time_w_arch"] = [
|
|
|
|
(x, y) for x, y in zip(info["all_total_times"], info["all_archs"])
|
|
|
|
]
|
2021-03-17 10:25:58 +01:00
|
|
|
for j, arch in enumerate(info["all_archs"]):
|
|
|
|
assert arch != -1, "invalid arch from {:} {:} {:} ({:}, {:})".format(
|
|
|
|
alg, search_space, dataset, index, j
|
|
|
|
)
|
|
|
|
alg2data[alg] = data
|
|
|
|
return alg2data
|
2020-07-13 12:04:52 +02:00
|
|
|
|
|
|
|
|
|
|
|
def query_performance(api, data, dataset, ticket):
|
2021-03-17 10:25:58 +01:00
|
|
|
results, is_size_space = [], api.search_space_name == "size"
|
|
|
|
for i, info in data.items():
|
|
|
|
time_w_arch = sorted(info["time_w_arch"], key=lambda x: abs(x[0] - ticket))
|
|
|
|
time_a, arch_a = time_w_arch[0]
|
|
|
|
time_b, arch_b = time_w_arch[1]
|
2021-03-18 09:02:55 +01:00
|
|
|
info_a = api.get_more_info(
|
|
|
|
arch_a, dataset=dataset, hp=90 if is_size_space else 200, is_random=False
|
|
|
|
)
|
|
|
|
info_b = api.get_more_info(
|
|
|
|
arch_b, dataset=dataset, hp=90 if is_size_space else 200, is_random=False
|
|
|
|
)
|
2021-03-17 10:25:58 +01:00
|
|
|
accuracy_a, accuracy_b = info_a["test-accuracy"], info_b["test-accuracy"]
|
2021-03-18 09:02:55 +01:00
|
|
|
interplate = (time_b - ticket) / (time_b - time_a) * accuracy_a + (
|
|
|
|
ticket - time_a
|
|
|
|
) / (time_b - time_a) * accuracy_b
|
2021-03-17 10:25:58 +01:00
|
|
|
results.append(interplate)
|
|
|
|
return sum(results) / len(results)
|
|
|
|
|
|
|
|
|
|
|
|
y_min_s = {
|
|
|
|
("cifar10", "tss"): 90,
|
|
|
|
("cifar10", "sss"): 92,
|
|
|
|
("cifar100", "tss"): 65,
|
|
|
|
("cifar100", "sss"): 65,
|
|
|
|
("ImageNet16-120", "tss"): 36,
|
|
|
|
("ImageNet16-120", "sss"): 40,
|
|
|
|
}
|
|
|
|
|
|
|
|
y_max_s = {
|
|
|
|
("cifar10", "tss"): 94.5,
|
|
|
|
("cifar10", "sss"): 93.3,
|
|
|
|
("cifar100", "tss"): 72,
|
|
|
|
("cifar100", "sss"): 70,
|
|
|
|
("ImageNet16-120", "tss"): 44,
|
|
|
|
("ImageNet16-120", "sss"): 46,
|
|
|
|
}
|
|
|
|
|
2021-03-18 09:02:55 +01:00
|
|
|
name2label = {
|
|
|
|
"cifar10": "CIFAR-10",
|
|
|
|
"cifar100": "CIFAR-100",
|
|
|
|
"ImageNet16-120": "ImageNet-16-120",
|
|
|
|
}
|
2021-03-17 10:25:58 +01:00
|
|
|
|
2020-07-30 15:07:11 +02:00
|
|
|
|
2020-07-13 12:04:52 +02:00
|
|
|
def visualize_curve(api, vis_save_dir, search_space, max_time):
|
2021-03-17 10:25:58 +01:00
|
|
|
vis_save_dir = vis_save_dir.resolve()
|
|
|
|
vis_save_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
|
|
|
|
dpi, width, height = 250, 5200, 1400
|
|
|
|
figsize = width / float(dpi), height / float(dpi)
|
|
|
|
LabelSize, LegendFontsize = 16, 16
|
|
|
|
|
|
|
|
def sub_plot_fn(ax, dataset):
|
|
|
|
alg2data = fetch_data(search_space=search_space, dataset=dataset)
|
|
|
|
alg2accuracies = OrderedDict()
|
|
|
|
total_tickets = 150
|
2021-03-18 09:02:55 +01:00
|
|
|
time_tickets = [
|
|
|
|
float(i) / total_tickets * max_time for i in range(total_tickets)
|
|
|
|
]
|
2021-03-17 10:25:58 +01:00
|
|
|
colors = ["b", "g", "c", "m", "y"]
|
|
|
|
ax.set_xlim(0, 200)
|
|
|
|
ax.set_ylim(y_min_s[(dataset, search_space)], y_max_s[(dataset, search_space)])
|
|
|
|
for idx, (alg, data) in enumerate(alg2data.items()):
|
|
|
|
print("plot alg : {:}".format(alg))
|
|
|
|
accuracies = []
|
|
|
|
for ticket in time_tickets:
|
|
|
|
accuracy = query_performance(api, data, dataset, ticket)
|
|
|
|
accuracies.append(accuracy)
|
|
|
|
alg2accuracies[alg] = accuracies
|
2021-03-18 09:02:55 +01:00
|
|
|
ax.plot(
|
|
|
|
[x / 100 for x in time_tickets],
|
|
|
|
accuracies,
|
|
|
|
c=colors[idx],
|
|
|
|
label="{:}".format(alg),
|
|
|
|
)
|
2021-03-17 10:25:58 +01:00
|
|
|
ax.set_xlabel("Estimated wall-clock time (1e2 seconds)", fontsize=LabelSize)
|
2021-03-18 09:02:55 +01:00
|
|
|
ax.set_ylabel(
|
|
|
|
"Test accuracy on {:}".format(name2label[dataset]), fontsize=LabelSize
|
|
|
|
)
|
|
|
|
ax.set_title(
|
|
|
|
"Searching results on {:}".format(name2label[dataset]),
|
|
|
|
fontsize=LabelSize + 4,
|
|
|
|
)
|
2021-03-17 10:25:58 +01:00
|
|
|
ax.legend(loc=4, fontsize=LegendFontsize)
|
|
|
|
|
|
|
|
fig, axs = plt.subplots(1, 3, figsize=figsize)
|
|
|
|
datasets = ["cifar10", "cifar100", "ImageNet16-120"]
|
|
|
|
for dataset, ax in zip(datasets, axs):
|
|
|
|
sub_plot_fn(ax, dataset)
|
|
|
|
print("sub-plot {:} on {:} done.".format(dataset, search_space))
|
|
|
|
save_path = (vis_save_dir / "{:}-curve.png".format(search_space)).resolve()
|
|
|
|
fig.savefig(save_path, dpi=dpi, bbox_inches="tight", format="png")
|
|
|
|
print("{:} save into {:}".format(time_string(), save_path))
|
|
|
|
plt.close("all")
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
2021-03-18 09:02:55 +01:00
|
|
|
parser = argparse.ArgumentParser(
|
|
|
|
description="NAS-Bench-X",
|
|
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--save_dir",
|
|
|
|
type=str,
|
|
|
|
default="output/vis-nas-bench/nas-algos",
|
|
|
|
help="Folder to save checkpoints and log.",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--search_space",
|
|
|
|
type=str,
|
|
|
|
choices=["tss", "sss"],
|
|
|
|
help="Choose the search space.",
|
|
|
|
)
|
2021-03-17 10:25:58 +01:00
|
|
|
parser.add_argument(
|
2021-03-18 09:02:55 +01:00
|
|
|
"--max_time", type=float, default=20000, help="The maximum time budget."
|
2021-03-17 10:25:58 +01:00
|
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
|
|
save_dir = Path(args.save_dir)
|
|
|
|
|
|
|
|
api = create(None, args.search_space, verbose=False)
|
|
|
|
visualize_curve(api, save_dir, args.search_space, args.max_time)
|