xautodl/exps/experimental/vis-nats-bench-algos.py

179 lines
6.4 KiB
Python
Raw Permalink Normal View History

2020-07-13 12:04:52 +02:00
###############################################################
# NAS-Bench-201, ICLR 2020 (https://arxiv.org/abs/2001.00326) #
###############################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.06 #
###############################################################
2020-07-30 15:07:11 +02:00
# Usage: python exps/experimental/vis-nats-bench-algos.py --search_space tss
# Usage: python exps/experimental/vis-nats-bench-algos.py --search_space sss
2020-07-13 12:04:52 +02:00
###############################################################
import os, gc, sys, time, torch, argparse
2020-07-13 12:04:52 +02:00
import numpy as np
from typing import List, Text, Dict, Any
from shutil import copyfile
from collections import defaultdict, OrderedDict
2021-03-17 10:25:58 +01:00
from copy import deepcopy
2020-07-13 12:04:52 +02:00
from pathlib import Path
import matplotlib
import seaborn as sns
2021-03-17 10:25:58 +01:00
matplotlib.use("agg")
2020-07-13 12:04:52 +02:00
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
2021-03-17 10:25:58 +01:00
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
if str(lib_dir) not in sys.path:
sys.path.insert(0, str(lib_dir))
2020-07-13 12:04:52 +02:00
from config_utils import dict2config, load_config
2020-07-30 15:07:11 +02:00
from nats_bench import create
2020-07-13 12:04:52 +02:00
from log_utils import time_string
2021-03-17 10:25:58 +01:00
def fetch_data(root_dir="./output/search", search_space="tss", dataset=None):
ss_dir = "{:}-{:}".format(root_dir, search_space)
alg2name, alg2path = OrderedDict(), OrderedDict()
alg2name["REA"] = "R-EA-SS3"
alg2name["REINFORCE"] = "REINFORCE-0.01"
alg2name["RANDOM"] = "RANDOM"
alg2name["BOHB"] = "BOHB"
for alg, name in alg2name.items():
alg2path[alg] = os.path.join(ss_dir, dataset, name, "results.pth")
assert os.path.isfile(alg2path[alg]), "invalid path : {:}".format(alg2path[alg])
alg2data = OrderedDict()
for alg, path in alg2path.items():
data = torch.load(path)
for index, info in data.items():
2021-03-18 09:02:55 +01:00
info["time_w_arch"] = [
(x, y) for x, y in zip(info["all_total_times"], info["all_archs"])
]
2021-03-17 10:25:58 +01:00
for j, arch in enumerate(info["all_archs"]):
assert arch != -1, "invalid arch from {:} {:} {:} ({:}, {:})".format(
alg, search_space, dataset, index, j
)
alg2data[alg] = data
return alg2data
2020-07-13 12:04:52 +02:00
def query_performance(api, data, dataset, ticket):
2021-03-17 10:25:58 +01:00
results, is_size_space = [], api.search_space_name == "size"
for i, info in data.items():
time_w_arch = sorted(info["time_w_arch"], key=lambda x: abs(x[0] - ticket))
time_a, arch_a = time_w_arch[0]
time_b, arch_b = time_w_arch[1]
2021-03-18 09:02:55 +01:00
info_a = api.get_more_info(
arch_a, dataset=dataset, hp=90 if is_size_space else 200, is_random=False
)
info_b = api.get_more_info(
arch_b, dataset=dataset, hp=90 if is_size_space else 200, is_random=False
)
2021-03-17 10:25:58 +01:00
accuracy_a, accuracy_b = info_a["test-accuracy"], info_b["test-accuracy"]
2021-03-18 09:02:55 +01:00
interplate = (time_b - ticket) / (time_b - time_a) * accuracy_a + (
ticket - time_a
) / (time_b - time_a) * accuracy_b
2021-03-17 10:25:58 +01:00
results.append(interplate)
return sum(results) / len(results)
y_min_s = {
("cifar10", "tss"): 90,
("cifar10", "sss"): 92,
("cifar100", "tss"): 65,
("cifar100", "sss"): 65,
("ImageNet16-120", "tss"): 36,
("ImageNet16-120", "sss"): 40,
}
y_max_s = {
("cifar10", "tss"): 94.5,
("cifar10", "sss"): 93.3,
("cifar100", "tss"): 72,
("cifar100", "sss"): 70,
("ImageNet16-120", "tss"): 44,
("ImageNet16-120", "sss"): 46,
}
2021-03-18 09:02:55 +01:00
name2label = {
"cifar10": "CIFAR-10",
"cifar100": "CIFAR-100",
"ImageNet16-120": "ImageNet-16-120",
}
2021-03-17 10:25:58 +01:00
2020-07-30 15:07:11 +02:00
2020-07-13 12:04:52 +02:00
def visualize_curve(api, vis_save_dir, search_space, max_time):
2021-03-17 10:25:58 +01:00
vis_save_dir = vis_save_dir.resolve()
vis_save_dir.mkdir(parents=True, exist_ok=True)
dpi, width, height = 250, 5200, 1400
figsize = width / float(dpi), height / float(dpi)
LabelSize, LegendFontsize = 16, 16
def sub_plot_fn(ax, dataset):
alg2data = fetch_data(search_space=search_space, dataset=dataset)
alg2accuracies = OrderedDict()
total_tickets = 150
2021-03-18 09:02:55 +01:00
time_tickets = [
float(i) / total_tickets * max_time for i in range(total_tickets)
]
2021-03-17 10:25:58 +01:00
colors = ["b", "g", "c", "m", "y"]
ax.set_xlim(0, 200)
ax.set_ylim(y_min_s[(dataset, search_space)], y_max_s[(dataset, search_space)])
for idx, (alg, data) in enumerate(alg2data.items()):
print("plot alg : {:}".format(alg))
accuracies = []
for ticket in time_tickets:
accuracy = query_performance(api, data, dataset, ticket)
accuracies.append(accuracy)
alg2accuracies[alg] = accuracies
2021-03-18 09:02:55 +01:00
ax.plot(
[x / 100 for x in time_tickets],
accuracies,
c=colors[idx],
label="{:}".format(alg),
)
2021-03-17 10:25:58 +01:00
ax.set_xlabel("Estimated wall-clock time (1e2 seconds)", fontsize=LabelSize)
2021-03-18 09:02:55 +01:00
ax.set_ylabel(
"Test accuracy on {:}".format(name2label[dataset]), fontsize=LabelSize
)
ax.set_title(
"Searching results on {:}".format(name2label[dataset]),
fontsize=LabelSize + 4,
)
2021-03-17 10:25:58 +01:00
ax.legend(loc=4, fontsize=LegendFontsize)
fig, axs = plt.subplots(1, 3, figsize=figsize)
datasets = ["cifar10", "cifar100", "ImageNet16-120"]
for dataset, ax in zip(datasets, axs):
sub_plot_fn(ax, dataset)
print("sub-plot {:} on {:} done.".format(dataset, search_space))
save_path = (vis_save_dir / "{:}-curve.png".format(search_space)).resolve()
fig.savefig(save_path, dpi=dpi, bbox_inches="tight", format="png")
print("{:} save into {:}".format(time_string(), save_path))
plt.close("all")
if __name__ == "__main__":
2021-03-18 09:02:55 +01:00
parser = argparse.ArgumentParser(
description="NAS-Bench-X",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
"--save_dir",
type=str,
default="output/vis-nas-bench/nas-algos",
help="Folder to save checkpoints and log.",
)
parser.add_argument(
"--search_space",
type=str,
choices=["tss", "sss"],
help="Choose the search space.",
)
2021-03-17 10:25:58 +01:00
parser.add_argument(
2021-03-18 09:02:55 +01:00
"--max_time", type=float, default=20000, help="The maximum time budget."
2021-03-17 10:25:58 +01:00
)
args = parser.parse_args()
save_dir = Path(args.save_dir)
api = create(None, args.search_space, verbose=False)
visualize_curve(api, save_dir, args.search_space, args.max_time)