231 lines
7.4 KiB
Python
231 lines
7.4 KiB
Python
|
#####################################################
|
||
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
|
||
|
#####################################################
|
||
|
# python exps/LFNA/lfna.py --env_version v1 --hidden_dim 16 --layer_dim 32 --epochs 50000
|
||
|
#####################################################
|
||
|
import sys, time, copy, torch, random, argparse
|
||
|
from tqdm import tqdm
|
||
|
from copy import deepcopy
|
||
|
from pathlib import Path
|
||
|
|
||
|
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
|
||
|
if str(lib_dir) not in sys.path:
|
||
|
sys.path.insert(0, str(lib_dir))
|
||
|
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint
|
||
|
from log_utils import time_string
|
||
|
from log_utils import AverageMeter, convert_secs2time
|
||
|
|
||
|
from utils import split_str2indexes
|
||
|
|
||
|
from procedures.advanced_main import basic_train_fn, basic_eval_fn
|
||
|
from procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric
|
||
|
from datasets.synthetic_core import get_synthetic_env
|
||
|
from models.xcore import get_model
|
||
|
from xlayers import super_core, trunc_normal_
|
||
|
|
||
|
|
||
|
from lfna_utils import lfna_setup, train_model, TimeData
|
||
|
|
||
|
from lfna_models_v2 import HyperNet
|
||
|
|
||
|
|
||
|
def main(args):
|
||
|
logger, env_info, model_kwargs = lfna_setup(args)
|
||
|
dynamic_env = env_info["dynamic_env"]
|
||
|
model = get_model(**model_kwargs)
|
||
|
model = model.to(args.device)
|
||
|
criterion = torch.nn.MSELoss()
|
||
|
|
||
|
logger.log("There are {:} weights.".format(model.get_w_container().numel()))
|
||
|
# meta_train_range = (dynamic_env.min_timestamp, (dynamic_env.min_timestamp + dynamic_env.max_timestamp) / 2)
|
||
|
# meta_train_interval = dynamic_env.timestamp_interval
|
||
|
|
||
|
shape_container = model.get_w_container().to_shape_container()
|
||
|
|
||
|
# pre-train the hypernetwork
|
||
|
timestamps = list(
|
||
|
dynamic_env.get_timestamp(index) for index in range(len(dynamic_env) // 2)
|
||
|
)
|
||
|
|
||
|
hypernet = HyperNet(shape_container, args.layer_dim, args.task_dim, timestamps)
|
||
|
hypernet = hypernet.to(args.device)
|
||
|
|
||
|
import pdb
|
||
|
|
||
|
pdb.set_trace()
|
||
|
|
||
|
# task_embed = torch.nn.Parameter(torch.Tensor(env_info["total"], args.task_dim))
|
||
|
total_bar = 16
|
||
|
task_embeds = []
|
||
|
for i in range(total_bar):
|
||
|
tensor = torch.Tensor(1, args.task_dim).to(args.device)
|
||
|
task_embeds.append(torch.nn.Parameter(tensor))
|
||
|
for task_embed in task_embeds:
|
||
|
trunc_normal_(task_embed, std=0.02)
|
||
|
|
||
|
model.train()
|
||
|
hypernet.train()
|
||
|
|
||
|
parameters = list(hypernet.parameters()) + task_embeds
|
||
|
# optimizer = torch.optim.Adam(parameters, lr=args.init_lr, amsgrad=True)
|
||
|
optimizer = torch.optim.Adam(parameters, lr=args.init_lr, weight_decay=1e-5)
|
||
|
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
|
||
|
optimizer,
|
||
|
milestones=[
|
||
|
int(args.epochs * 0.8),
|
||
|
int(args.epochs * 0.9),
|
||
|
],
|
||
|
gamma=0.1,
|
||
|
)
|
||
|
|
||
|
# total_bar = env_info["total"] - 1
|
||
|
# LFNA meta-training
|
||
|
loss_meter = AverageMeter()
|
||
|
per_epoch_time, start_time = AverageMeter(), time.time()
|
||
|
for iepoch in range(args.epochs):
|
||
|
|
||
|
need_time = "Time Left: {:}".format(
|
||
|
convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True)
|
||
|
)
|
||
|
head_str = (
|
||
|
"[{:}] [{:04d}/{:04d}] ".format(time_string(), iepoch, args.epochs)
|
||
|
+ need_time
|
||
|
)
|
||
|
|
||
|
losses = []
|
||
|
# for ibatch in range(args.meta_batch):
|
||
|
for cur_time in range(total_bar):
|
||
|
# cur_time = random.randint(0, total_bar)
|
||
|
cur_task_embed = task_embeds[cur_time]
|
||
|
cur_container = hypernet(cur_task_embed)
|
||
|
cur_x = env_info["{:}-x".format(cur_time)].to(args.device)
|
||
|
cur_y = env_info["{:}-y".format(cur_time)].to(args.device)
|
||
|
cur_dataset = TimeData(cur_time, cur_x, cur_y)
|
||
|
|
||
|
preds = model.forward_with_container(cur_dataset.x, cur_container)
|
||
|
optimizer.zero_grad()
|
||
|
loss = criterion(preds, cur_dataset.y)
|
||
|
|
||
|
losses.append(loss)
|
||
|
|
||
|
final_loss = torch.stack(losses).mean()
|
||
|
final_loss.backward()
|
||
|
optimizer.step()
|
||
|
lr_scheduler.step()
|
||
|
|
||
|
loss_meter.update(final_loss.item())
|
||
|
if iepoch % 100 == 0:
|
||
|
logger.log(
|
||
|
head_str
|
||
|
+ " meta-loss: {:.4f} ({:.4f}) :: lr={:.5f}, batch={:}".format(
|
||
|
loss_meter.avg,
|
||
|
loss_meter.val,
|
||
|
min(lr_scheduler.get_last_lr()),
|
||
|
len(losses),
|
||
|
)
|
||
|
)
|
||
|
|
||
|
save_checkpoint(
|
||
|
{
|
||
|
"hypernet": hypernet.state_dict(),
|
||
|
"task_embed": task_embed,
|
||
|
"lr_scheduler": lr_scheduler.state_dict(),
|
||
|
"iepoch": iepoch,
|
||
|
},
|
||
|
logger.path("model"),
|
||
|
logger,
|
||
|
)
|
||
|
loss_meter.reset()
|
||
|
per_epoch_time.update(time.time() - start_time)
|
||
|
start_time = time.time()
|
||
|
|
||
|
print(model)
|
||
|
print(hypernet)
|
||
|
|
||
|
w_container_per_epoch = dict()
|
||
|
for idx in range(0, total_bar):
|
||
|
future_time = env_info["{:}-timestamp".format(idx)]
|
||
|
future_x = env_info["{:}-x".format(idx)]
|
||
|
future_y = env_info["{:}-y".format(idx)]
|
||
|
future_container = hypernet(task_embeds[idx])
|
||
|
w_container_per_epoch[idx] = future_container.no_grad_clone()
|
||
|
with torch.no_grad():
|
||
|
future_y_hat = model.forward_with_container(
|
||
|
future_x, w_container_per_epoch[idx]
|
||
|
)
|
||
|
future_loss = criterion(future_y_hat, future_y)
|
||
|
logger.log("meta-test: [{:03d}] -> loss={:.4f}".format(idx, future_loss.item()))
|
||
|
|
||
|
save_checkpoint(
|
||
|
{"w_container_per_epoch": w_container_per_epoch},
|
||
|
logger.path(None) / "final-ckp.pth",
|
||
|
logger,
|
||
|
)
|
||
|
|
||
|
logger.log("-" * 200 + "\n")
|
||
|
logger.close()
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
parser = argparse.ArgumentParser(".")
|
||
|
parser.add_argument(
|
||
|
"--save_dir",
|
||
|
type=str,
|
||
|
default="./outputs/lfna-synthetic/lfna-battle",
|
||
|
help="The checkpoint directory.",
|
||
|
)
|
||
|
parser.add_argument(
|
||
|
"--env_version",
|
||
|
type=str,
|
||
|
required=True,
|
||
|
help="The synthetic enviornment version.",
|
||
|
)
|
||
|
parser.add_argument(
|
||
|
"--hidden_dim",
|
||
|
type=int,
|
||
|
required=True,
|
||
|
help="The hidden dimension.",
|
||
|
)
|
||
|
parser.add_argument(
|
||
|
"--layer_dim",
|
||
|
type=int,
|
||
|
required=True,
|
||
|
help="The hidden dimension.",
|
||
|
)
|
||
|
#####
|
||
|
parser.add_argument(
|
||
|
"--init_lr",
|
||
|
type=float,
|
||
|
default=0.1,
|
||
|
help="The initial learning rate for the optimizer (default is Adam)",
|
||
|
)
|
||
|
parser.add_argument(
|
||
|
"--meta_batch",
|
||
|
type=int,
|
||
|
default=64,
|
||
|
help="The batch size for the meta-model",
|
||
|
)
|
||
|
parser.add_argument(
|
||
|
"--epochs",
|
||
|
type=int,
|
||
|
default=2000,
|
||
|
help="The total number of epochs.",
|
||
|
)
|
||
|
parser.add_argument(
|
||
|
"--device",
|
||
|
type=str,
|
||
|
default="cpu",
|
||
|
help="",
|
||
|
)
|
||
|
# Random Seed
|
||
|
parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")
|
||
|
args = parser.parse_args()
|
||
|
if args.rand_seed is None or args.rand_seed < 0:
|
||
|
args.rand_seed = random.randint(1, 100000)
|
||
|
assert args.save_dir is not None, "The save dir argument can not be None"
|
||
|
args.task_dim = args.layer_dim
|
||
|
args.save_dir = "{:}-{:}-d{:}".format(
|
||
|
args.save_dir, args.env_version, args.hidden_dim
|
||
|
)
|
||
|
main(args)
|