Update LFNA version 1.0
This commit is contained in:
		| @@ -1,7 +1,7 @@ | |||||||
| ##################################################### | ##################################################### | ||||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # | ||||||
| ##################################################### | ##################################################### | ||||||
| # python exps/LFNA/lfna.py --env_version v1 --hidden_dim 16 --layer_dim 32 --epochs 50000 | # python exps/LFNA/lfna.py --env_version v1 | ||||||
| ##################################################### | ##################################################### | ||||||
| import sys, time, copy, torch, random, argparse | import sys, time, copy, torch, random, argparse | ||||||
| from tqdm import tqdm | from tqdm import tqdm | ||||||
| @@ -19,56 +19,82 @@ from utils import split_str2indexes | |||||||
|  |  | ||||||
| from procedures.advanced_main import basic_train_fn, basic_eval_fn | from procedures.advanced_main import basic_train_fn, basic_eval_fn | ||||||
| from procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric | from procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric | ||||||
| from datasets.synthetic_core import get_synthetic_env | from datasets.synthetic_core import get_synthetic_env, EnvSampler | ||||||
| from models.xcore import get_model | from models.xcore import get_model | ||||||
| from xlayers import super_core, trunc_normal_ | from xlayers import super_core, trunc_normal_ | ||||||
|  |  | ||||||
|  |  | ||||||
| from lfna_utils import lfna_setup, train_model, TimeData | from lfna_utils import lfna_setup, train_model, TimeData | ||||||
|  | from lfna_meta_model import LFNA_Meta | ||||||
|  |  | ||||||
| from lfna_models_v2 import HyperNet |  | ||||||
|  | def epoch_train(loader, meta_model, base_model, optimizer, criterion, device, logger): | ||||||
|  |     base_model.train() | ||||||
|  |     meta_model.train() | ||||||
|  |     loss_meter = AverageMeter() | ||||||
|  |     for ibatch, batch_data in enumerate(loader): | ||||||
|  |         timestamps, (batch_seq_inputs, batch_seq_targets) = batch_data | ||||||
|  |         timestamps = timestamps.squeeze(dim=-1).to(device) | ||||||
|  |         batch_seq_inputs = batch_seq_inputs.to(device) | ||||||
|  |         batch_seq_targets = batch_seq_targets.to(device) | ||||||
|  |  | ||||||
|  |         optimizer.zero_grad() | ||||||
|  |  | ||||||
|  |         batch_seq_containers = meta_model(timestamps) | ||||||
|  |         losses = [] | ||||||
|  |         for seq_containers, seq_inputs, seq_targets in zip( | ||||||
|  |             batch_seq_containers, batch_seq_inputs, batch_seq_targets | ||||||
|  |         ): | ||||||
|  |             for container, inputs, targets in zip( | ||||||
|  |                 seq_containers, seq_inputs, seq_targets | ||||||
|  |             ): | ||||||
|  |                 predictions = base_model.forward_with_container(inputs, container) | ||||||
|  |                 loss = criterion(predictions, targets) | ||||||
|  |                 losses.append(loss) | ||||||
|  |         final_loss = torch.stack(losses).mean() | ||||||
|  |         final_loss.backward() | ||||||
|  |         optimizer.step() | ||||||
|  |         loss_meter.update(final_loss.item()) | ||||||
|  |     return loss_meter | ||||||
|  |  | ||||||
|  |  | ||||||
| def main(args): | def main(args): | ||||||
|     logger, env_info, model_kwargs = lfna_setup(args) |     logger, env_info, model_kwargs = lfna_setup(args) | ||||||
|     dynamic_env = env_info["dynamic_env"] |     dynamic_env = get_synthetic_env(mode="train", version=args.env_version) | ||||||
|     model = get_model(**model_kwargs) |     base_model = get_model(**model_kwargs) | ||||||
|     model = model.to(args.device) |     base_model = base_model.to(args.device) | ||||||
|     criterion = torch.nn.MSELoss() |     criterion = torch.nn.MSELoss() | ||||||
|  |  | ||||||
|     logger.log("There are {:} weights.".format(model.get_w_container().numel())) |     shape_container = base_model.get_w_container().to_shape_container() | ||||||
|     # meta_train_range = (dynamic_env.min_timestamp, (dynamic_env.min_timestamp + dynamic_env.max_timestamp) / 2) |  | ||||||
|     # meta_train_interval = dynamic_env.timestamp_interval |  | ||||||
|  |  | ||||||
|     shape_container = model.get_w_container().to_shape_container() |  | ||||||
|  |  | ||||||
|     # pre-train the hypernetwork |     # pre-train the hypernetwork | ||||||
|     timestamps = list( |     timestamps = dynamic_env.get_timestamp(None) | ||||||
|         dynamic_env.get_timestamp(index) for index in range(len(dynamic_env) // 2) |     meta_model = LFNA_Meta(shape_container, args.layer_dim, args.time_dim, timestamps) | ||||||
|  |     meta_model = meta_model.to(args.device) | ||||||
|  |  | ||||||
|  |     logger.log("The base-model has {:} weights.".format(base_model.numel())) | ||||||
|  |     logger.log("The meta-model has {:} weights.".format(meta_model.numel())) | ||||||
|  |  | ||||||
|  |     batch_sampler = EnvSampler(dynamic_env, args.meta_batch, args.sampler_enlarge) | ||||||
|  |     dynamic_env.reset_max_seq_length(args.seq_length) | ||||||
|  |     """ | ||||||
|  |     env_loader = torch.utils.data.DataLoader( | ||||||
|  |         dynamic_env, | ||||||
|  |         batch_size=args.meta_batch, | ||||||
|  |         shuffle=True, | ||||||
|  |         num_workers=args.workers, | ||||||
|  |         pin_memory=True, | ||||||
|  |     ) | ||||||
|  |     """ | ||||||
|  |     env_loader = torch.utils.data.DataLoader( | ||||||
|  |         dynamic_env, | ||||||
|  |         batch_sampler=batch_sampler, | ||||||
|  |         num_workers=args.workers, | ||||||
|  |         pin_memory=True, | ||||||
|     ) |     ) | ||||||
|  |  | ||||||
|     hypernet = HyperNet(shape_container, args.layer_dim, args.task_dim, timestamps) |     optimizer = torch.optim.Adam( | ||||||
|     hypernet = hypernet.to(args.device) |         meta_model.parameters(), lr=args.init_lr, weight_decay=1e-5, amsgrad=True | ||||||
|  |     ) | ||||||
|     import pdb |  | ||||||
|  |  | ||||||
|     pdb.set_trace() |  | ||||||
|  |  | ||||||
|     # task_embed = torch.nn.Parameter(torch.Tensor(env_info["total"], args.task_dim)) |  | ||||||
|     total_bar = 16 |  | ||||||
|     task_embeds = [] |  | ||||||
|     for i in range(total_bar): |  | ||||||
|         tensor = torch.Tensor(1, args.task_dim).to(args.device) |  | ||||||
|         task_embeds.append(torch.nn.Parameter(tensor)) |  | ||||||
|     for task_embed in task_embeds: |  | ||||||
|         trunc_normal_(task_embed, std=0.02) |  | ||||||
|  |  | ||||||
|     model.train() |  | ||||||
|     hypernet.train() |  | ||||||
|  |  | ||||||
|     parameters = list(hypernet.parameters()) + task_embeds |  | ||||||
|     # optimizer = torch.optim.Adam(parameters, lr=args.init_lr, amsgrad=True) |  | ||||||
|     optimizer = torch.optim.Adam(parameters, lr=args.init_lr, weight_decay=1e-5) |  | ||||||
|     lr_scheduler = torch.optim.lr_scheduler.MultiStepLR( |     lr_scheduler = torch.optim.lr_scheduler.MultiStepLR( | ||||||
|         optimizer, |         optimizer, | ||||||
|         milestones=[ |         milestones=[ | ||||||
| @@ -77,71 +103,59 @@ def main(args): | |||||||
|         ], |         ], | ||||||
|         gamma=0.1, |         gamma=0.1, | ||||||
|     ) |     ) | ||||||
|  |     logger.log("The base-model is\n{:}".format(base_model)) | ||||||
|  |     logger.log("The meta-model is\n{:}".format(meta_model)) | ||||||
|  |     logger.log("The optimizer is\n{:}".format(optimizer)) | ||||||
|  |     logger.log("Per epoch iterations = {:}".format(len(env_loader))) | ||||||
|  |  | ||||||
|     # total_bar = env_info["total"] - 1 |  | ||||||
|     # LFNA meta-training |     # LFNA meta-training | ||||||
|     loss_meter = AverageMeter() |  | ||||||
|     per_epoch_time, start_time = AverageMeter(), time.time() |     per_epoch_time, start_time = AverageMeter(), time.time() | ||||||
|  |     last_success_epoch = 0 | ||||||
|     for iepoch in range(args.epochs): |     for iepoch in range(args.epochs): | ||||||
|  |  | ||||||
|         need_time = "Time Left: {:}".format( |         head_str = "[{:}] [{:04d}/{:04d}] ".format( | ||||||
|  |             time_string(), iepoch, args.epochs | ||||||
|  |         ) + "Time Left: {:}".format( | ||||||
|             convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True) |             convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True) | ||||||
|         ) |         ) | ||||||
|         head_str = ( |  | ||||||
|             "[{:}] [{:04d}/{:04d}] ".format(time_string(), iepoch, args.epochs) |         loss_meter = epoch_train( | ||||||
|             + need_time |             env_loader, | ||||||
|  |             meta_model, | ||||||
|  |             base_model, | ||||||
|  |             optimizer, | ||||||
|  |             criterion, | ||||||
|  |             args.device, | ||||||
|  |             logger, | ||||||
|         ) |         ) | ||||||
|  |  | ||||||
|         losses = [] |  | ||||||
|         # for ibatch in range(args.meta_batch): |  | ||||||
|         for cur_time in range(total_bar): |  | ||||||
|             # cur_time = random.randint(0, total_bar) |  | ||||||
|             cur_task_embed = task_embeds[cur_time] |  | ||||||
|             cur_container = hypernet(cur_task_embed) |  | ||||||
|             cur_x = env_info["{:}-x".format(cur_time)].to(args.device) |  | ||||||
|             cur_y = env_info["{:}-y".format(cur_time)].to(args.device) |  | ||||||
|             cur_dataset = TimeData(cur_time, cur_x, cur_y) |  | ||||||
|  |  | ||||||
|             preds = model.forward_with_container(cur_dataset.x, cur_container) |  | ||||||
|             optimizer.zero_grad() |  | ||||||
|             loss = criterion(preds, cur_dataset.y) |  | ||||||
|  |  | ||||||
|             losses.append(loss) |  | ||||||
|  |  | ||||||
|         final_loss = torch.stack(losses).mean() |  | ||||||
|         final_loss.backward() |  | ||||||
|         optimizer.step() |  | ||||||
|         lr_scheduler.step() |         lr_scheduler.step() | ||||||
|  |  | ||||||
|         loss_meter.update(final_loss.item()) |  | ||||||
|         if iepoch % 100 == 0: |  | ||||||
|         logger.log( |         logger.log( | ||||||
|             head_str |             head_str | ||||||
|                 + " meta-loss: {:.4f} ({:.4f}) :: lr={:.5f}, batch={:}".format( |             + " meta-loss: {meter.avg:.4f} ({meter.count:.0f})".format(meter=loss_meter) | ||||||
|                     loss_meter.avg, |             + " :: lr={:.5f}".format(min(lr_scheduler.get_last_lr())) | ||||||
|                     loss_meter.val, |  | ||||||
|                     min(lr_scheduler.get_last_lr()), |  | ||||||
|                     len(losses), |  | ||||||
|         ) |         ) | ||||||
|             ) |         success, best_score = meta_model.save_best(-loss_meter.avg) | ||||||
|  |         if success: | ||||||
|  |             logger.log("Achieve the best with best_score = {:.3f}".format(best_score)) | ||||||
|  |             last_success_epoch = iepoch | ||||||
|             save_checkpoint( |             save_checkpoint( | ||||||
|                 { |                 { | ||||||
|                     "hypernet": hypernet.state_dict(), |                     "meta_model": meta_model.state_dict(), | ||||||
|                     "task_embed": task_embed, |                     "optimizer": optimizer.state_dict(), | ||||||
|                     "lr_scheduler": lr_scheduler.state_dict(), |                     "lr_scheduler": lr_scheduler.state_dict(), | ||||||
|                     "iepoch": iepoch, |                     "iepoch": iepoch, | ||||||
|  |                     "args": args, | ||||||
|                 }, |                 }, | ||||||
|                 logger.path("model"), |                 logger.path("model"), | ||||||
|                 logger, |                 logger, | ||||||
|             ) |             ) | ||||||
|             loss_meter.reset() |         if iepoch - last_success_epoch >= args.early_stop_thresh: | ||||||
|  |             logger.log("Early stop at {:}".format(iepoch)) | ||||||
|  |             break | ||||||
|  |  | ||||||
|         per_epoch_time.update(time.time() - start_time) |         per_epoch_time.update(time.time() - start_time) | ||||||
|         start_time = time.time() |         start_time = time.time() | ||||||
|  |  | ||||||
|     print(model) |  | ||||||
|     print(hypernet) |  | ||||||
|  |  | ||||||
|     w_container_per_epoch = dict() |     w_container_per_epoch = dict() | ||||||
|     for idx in range(0, total_bar): |     for idx in range(0, total_bar): | ||||||
|         future_time = env_info["{:}-timestamp".format(idx)] |         future_time = env_info["{:}-timestamp".format(idx)] | ||||||
| @@ -183,20 +197,26 @@ if __name__ == "__main__": | |||||||
|     parser.add_argument( |     parser.add_argument( | ||||||
|         "--hidden_dim", |         "--hidden_dim", | ||||||
|         type=int, |         type=int, | ||||||
|         required=True, |         default=16, | ||||||
|         help="The hidden dimension.", |         help="The hidden dimension.", | ||||||
|     ) |     ) | ||||||
|     parser.add_argument( |     parser.add_argument( | ||||||
|         "--layer_dim", |         "--layer_dim", | ||||||
|         type=int, |         type=int, | ||||||
|         required=True, |         default=16, | ||||||
|         help="The hidden dimension.", |         help="The layer chunk dimension.", | ||||||
|  |     ) | ||||||
|  |     parser.add_argument( | ||||||
|  |         "--time_dim", | ||||||
|  |         type=int, | ||||||
|  |         default=16, | ||||||
|  |         help="The timestamp dimension.", | ||||||
|     ) |     ) | ||||||
|     ##### |     ##### | ||||||
|     parser.add_argument( |     parser.add_argument( | ||||||
|         "--init_lr", |         "--init_lr", | ||||||
|         type=float, |         type=float, | ||||||
|         default=0.1, |         default=0.01, | ||||||
|         help="The initial learning rate for the optimizer (default is Adam)", |         help="The initial learning rate for the optimizer (default is Adam)", | ||||||
|     ) |     ) | ||||||
|     parser.add_argument( |     parser.add_argument( | ||||||
| @@ -206,10 +226,23 @@ if __name__ == "__main__": | |||||||
|         help="The batch size for the meta-model", |         help="The batch size for the meta-model", | ||||||
|     ) |     ) | ||||||
|     parser.add_argument( |     parser.add_argument( | ||||||
|         "--epochs", |         "--sampler_enlarge", | ||||||
|         type=int, |         type=int, | ||||||
|         default=2000, |         default=5, | ||||||
|         help="The total number of epochs.", |         help="Enlarge the #iterations for an epoch", | ||||||
|  |     ) | ||||||
|  |     parser.add_argument("--epochs", type=int, default=1000, help="The total #epochs.") | ||||||
|  |     parser.add_argument( | ||||||
|  |         "--early_stop_thresh", | ||||||
|  |         type=int, | ||||||
|  |         default=50, | ||||||
|  |         help="The maximum epochs for early stop.", | ||||||
|  |     ) | ||||||
|  |     parser.add_argument( | ||||||
|  |         "--seq_length", type=int, default=5, help="The sequence length." | ||||||
|  |     ) | ||||||
|  |     parser.add_argument( | ||||||
|  |         "--workers", type=int, default=4, help="The number of workers in parallel." | ||||||
|     ) |     ) | ||||||
|     parser.add_argument( |     parser.add_argument( | ||||||
|         "--device", |         "--device", | ||||||
| @@ -223,8 +256,7 @@ if __name__ == "__main__": | |||||||
|     if args.rand_seed is None or args.rand_seed < 0: |     if args.rand_seed is None or args.rand_seed < 0: | ||||||
|         args.rand_seed = random.randint(1, 100000) |         args.rand_seed = random.randint(1, 100000) | ||||||
|     assert args.save_dir is not None, "The save dir argument can not be None" |     assert args.save_dir is not None, "The save dir argument can not be None" | ||||||
|     args.task_dim = args.layer_dim |     args.save_dir = "{:}-{:}-d{:}_{:}_{:}".format( | ||||||
|     args.save_dir = "{:}-{:}-d{:}".format( |         args.save_dir, args.env_version, args.hidden_dim, args.layer_dim, args.time_dim | ||||||
|         args.save_dir, args.env_version, args.hidden_dim |  | ||||||
|     ) |     ) | ||||||
|     main(args) |     main(args) | ||||||
|   | |||||||
							
								
								
									
										128
									
								
								exps/LFNA/lfna_meta_model.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										128
									
								
								exps/LFNA/lfna_meta_model.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,128 @@ | |||||||
|  | ##################################################### | ||||||
|  | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # | ||||||
|  | ##################################################### | ||||||
|  | import copy | ||||||
|  | import torch | ||||||
|  |  | ||||||
|  | import torch.nn.functional as F | ||||||
|  |  | ||||||
|  | from xlayers import super_core | ||||||
|  | from xlayers import trunc_normal_ | ||||||
|  | from models.xcore import get_model | ||||||
|  |  | ||||||
|  |  | ||||||
|  | class LFNA_Meta(super_core.SuperModule): | ||||||
|  |     """Learning to Forecast Neural Adaptation (Meta Model Design).""" | ||||||
|  |  | ||||||
|  |     def __init__( | ||||||
|  |         self, | ||||||
|  |         shape_container, | ||||||
|  |         layer_embeding, | ||||||
|  |         time_embedding, | ||||||
|  |         meta_timestamps, | ||||||
|  |         mha_depth: int = 2, | ||||||
|  |         dropout: float = 0.1, | ||||||
|  |     ): | ||||||
|  |         super(LFNA_Meta, self).__init__() | ||||||
|  |         self._shape_container = shape_container | ||||||
|  |         self._num_layers = len(shape_container) | ||||||
|  |         self._numel_per_layer = [] | ||||||
|  |         for ilayer in range(self._num_layers): | ||||||
|  |             self._numel_per_layer.append(shape_container[ilayer].numel()) | ||||||
|  |         self._raw_meta_timestamps = meta_timestamps | ||||||
|  |  | ||||||
|  |         self.register_parameter( | ||||||
|  |             "_super_layer_embed", | ||||||
|  |             torch.nn.Parameter(torch.Tensor(self._num_layers, layer_embeding)), | ||||||
|  |         ) | ||||||
|  |         self.register_parameter( | ||||||
|  |             "_super_meta_embed", | ||||||
|  |             torch.nn.Parameter(torch.Tensor(len(meta_timestamps), time_embedding)), | ||||||
|  |         ) | ||||||
|  |         self.register_buffer("_meta_timestamps", torch.Tensor(meta_timestamps)) | ||||||
|  |  | ||||||
|  |         # build transformer | ||||||
|  |         layers = [] | ||||||
|  |         for ilayer in range(mha_depth): | ||||||
|  |             layers.append( | ||||||
|  |                 super_core.SuperTransformerEncoderLayer( | ||||||
|  |                     time_embedding, | ||||||
|  |                     4, | ||||||
|  |                     True, | ||||||
|  |                     4, | ||||||
|  |                     dropout, | ||||||
|  |                     norm_affine=False, | ||||||
|  |                     order=super_core.LayerOrder.PostNorm, | ||||||
|  |                 ) | ||||||
|  |             ) | ||||||
|  |         self.meta_corrector = super_core.SuperSequential(*layers) | ||||||
|  |  | ||||||
|  |         model_kwargs = dict( | ||||||
|  |             config=dict(model_type="dual_norm_mlp"), | ||||||
|  |             input_dim=layer_embeding + time_embedding, | ||||||
|  |             output_dim=max(self._numel_per_layer), | ||||||
|  |             hidden_dims=[(layer_embeding + time_embedding) * 2] * 3, | ||||||
|  |             act_cls="gelu", | ||||||
|  |             norm_cls="layer_norm_1d", | ||||||
|  |             dropout=dropout, | ||||||
|  |         ) | ||||||
|  |         self._generator = get_model(**model_kwargs) | ||||||
|  |         # print("generator: {:}".format(self._generator)) | ||||||
|  |  | ||||||
|  |         # unknown token | ||||||
|  |         self.register_parameter( | ||||||
|  |             "_unknown_token", | ||||||
|  |             torch.nn.Parameter(torch.Tensor(1, time_embedding)), | ||||||
|  |         ) | ||||||
|  |  | ||||||
|  |         # initialization | ||||||
|  |         trunc_normal_( | ||||||
|  |             [self._super_layer_embed, self._super_meta_embed, self._unknown_token], | ||||||
|  |             std=0.02, | ||||||
|  |         ) | ||||||
|  |  | ||||||
|  |     def forward_raw(self, timestamps): | ||||||
|  |         # timestamps is a batch of sequence of timestamps | ||||||
|  |         batch, seq = timestamps.shape | ||||||
|  |         timestamps = timestamps.unsqueeze(dim=-1) | ||||||
|  |         meta_timestamps = self._meta_timestamps.view(1, 1, -1) | ||||||
|  |         time_diffs = timestamps - meta_timestamps | ||||||
|  |         time_match_v, time_match_i = torch.min(torch.abs(time_diffs), dim=-1) | ||||||
|  |         # select corresponding meta-knowledge | ||||||
|  |         meta_match = torch.index_select( | ||||||
|  |             self._super_meta_embed, dim=0, index=time_match_i.view(-1) | ||||||
|  |         ) | ||||||
|  |         meta_match = meta_match.view(batch, seq, -1) | ||||||
|  |         # create the probability | ||||||
|  |         time_probs = (1 / torch.exp(time_match_v * 10)).view(batch, seq, 1) | ||||||
|  |         time_probs[:, -1, :] = 0 | ||||||
|  |         unknown_token = self._unknown_token.view(1, 1, -1) | ||||||
|  |         raw_meta_embed = time_probs * meta_match + (1 - time_probs) * unknown_token | ||||||
|  |  | ||||||
|  |         meta_embed = self.meta_corrector(raw_meta_embed) | ||||||
|  |         # create joint embed | ||||||
|  |         num_layer, _ = self._super_layer_embed.shape | ||||||
|  |         meta_embed = meta_embed.view(batch, seq, 1, -1).expand(-1, -1, num_layer, -1) | ||||||
|  |         layer_embed = self._super_layer_embed.view(1, 1, num_layer, -1).expand( | ||||||
|  |             batch, seq, -1, -1 | ||||||
|  |         ) | ||||||
|  |         joint_embed = torch.cat((meta_embed, layer_embed), dim=-1) | ||||||
|  |         batch_weights = self._generator(joint_embed) | ||||||
|  |         batch_containers = [] | ||||||
|  |         for seq_weights in torch.split(batch_weights, 1): | ||||||
|  |             seq_containers = [] | ||||||
|  |             for weights in torch.split(seq_weights.squeeze(0), 1): | ||||||
|  |                 weights = torch.split(weights.squeeze(0), 1) | ||||||
|  |                 seq_containers.append(self._shape_container.translate(weights)) | ||||||
|  |             batch_containers.append(seq_containers) | ||||||
|  |         return batch_containers | ||||||
|  |  | ||||||
|  |     def forward_candidate(self, input): | ||||||
|  |         raise NotImplementedError | ||||||
|  |  | ||||||
|  |     def extra_repr(self) -> str: | ||||||
|  |         return "(_super_layer_embed): {:}, (_super_meta_embed): {:}, (_meta_timestamps): {:}".format( | ||||||
|  |             list(self._super_layer_embed.shape), | ||||||
|  |             list(self._super_meta_embed.shape), | ||||||
|  |             list(self._meta_timestamps.shape), | ||||||
|  |         ) | ||||||
| @@ -1,72 +0,0 @@ | |||||||
| ##################################################### |  | ||||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # |  | ||||||
| ##################################################### |  | ||||||
| import copy |  | ||||||
| import torch |  | ||||||
|  |  | ||||||
| import torch.nn.functional as F |  | ||||||
|  |  | ||||||
| from xlayers import super_core |  | ||||||
| from xlayers import trunc_normal_ |  | ||||||
| from models.xcore import get_model |  | ||||||
|  |  | ||||||
|  |  | ||||||
| class HyperNet(super_core.SuperModule): |  | ||||||
|     """The hyper-network.""" |  | ||||||
|  |  | ||||||
|     def __init__( |  | ||||||
|         self, |  | ||||||
|         shape_container, |  | ||||||
|         layer_embeding, |  | ||||||
|         task_embedding, |  | ||||||
|         meta_timestamps, |  | ||||||
|         return_container: bool = True, |  | ||||||
|     ): |  | ||||||
|         super(HyperNet, self).__init__() |  | ||||||
|         self._shape_container = shape_container |  | ||||||
|         self._num_layers = len(shape_container) |  | ||||||
|         self._numel_per_layer = [] |  | ||||||
|         for ilayer in range(self._num_layers): |  | ||||||
|             self._numel_per_layer.append(shape_container[ilayer].numel()) |  | ||||||
|  |  | ||||||
|         self.register_parameter( |  | ||||||
|             "_super_layer_embed", |  | ||||||
|             torch.nn.Parameter(torch.Tensor(self._num_layers, layer_embeding)), |  | ||||||
|         ) |  | ||||||
|         trunc_normal_(self._super_layer_embed, std=0.02) |  | ||||||
|  |  | ||||||
|         model_kwargs = dict( |  | ||||||
|             config=dict(model_type="dual_norm_mlp"), |  | ||||||
|             input_dim=layer_embeding + task_embedding, |  | ||||||
|             output_dim=max(self._numel_per_layer), |  | ||||||
|             hidden_dims=[(layer_embeding + task_embedding) * 2] * 3, |  | ||||||
|             act_cls="gelu", |  | ||||||
|             norm_cls="layer_norm_1d", |  | ||||||
|             dropout=0.2, |  | ||||||
|         ) |  | ||||||
|         import pdb |  | ||||||
|  |  | ||||||
|         pdb.set_trace() |  | ||||||
|         self._generator = get_model(**model_kwargs) |  | ||||||
|         self._return_container = return_container |  | ||||||
|         print("generator: {:}".format(self._generator)) |  | ||||||
|  |  | ||||||
|     def forward_raw(self, task_embed): |  | ||||||
|         # task_embed = F.normalize(task_embed, dim=-1, p=2) |  | ||||||
|         # layer_embed = F.normalize(self._super_layer_embed, dim=-1, p=2) |  | ||||||
|         layer_embed = self._super_layer_embed |  | ||||||
|         task_embed = task_embed.view(1, -1).expand(self._num_layers, -1) |  | ||||||
|  |  | ||||||
|         joint_embed = torch.cat((task_embed, layer_embed), dim=-1) |  | ||||||
|         weights = self._generator(joint_embed) |  | ||||||
|         if self._return_container: |  | ||||||
|             weights = torch.split(weights, 1) |  | ||||||
|             return self._shape_container.translate(weights) |  | ||||||
|         else: |  | ||||||
|             return weights |  | ||||||
|  |  | ||||||
|     def forward_candidate(self, input): |  | ||||||
|         raise NotImplementedError |  | ||||||
|  |  | ||||||
|     def extra_repr(self) -> str: |  | ||||||
|         return "(_super_layer_embed): {:}".format(list(self._super_layer_embed.shape)) |  | ||||||
| @@ -2,6 +2,7 @@ | |||||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.05 # | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.05 # | ||||||
| ##################################################### | ##################################################### | ||||||
| from .synthetic_utils import TimeStamp | from .synthetic_utils import TimeStamp | ||||||
|  | from .synthetic_env import EnvSampler | ||||||
| from .synthetic_env import SyntheticDEnv | from .synthetic_env import SyntheticDEnv | ||||||
| from .math_core import LinearFunc | from .math_core import LinearFunc | ||||||
| from .math_core import DynamicLinearFunc | from .math_core import DynamicLinearFunc | ||||||
|   | |||||||
| @@ -2,7 +2,7 @@ | |||||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # | ||||||
| ##################################################### | ##################################################### | ||||||
| import math | import math | ||||||
| import abc | import random | ||||||
| import numpy as np | import numpy as np | ||||||
| from typing import List, Optional, Dict | from typing import List, Optional, Dict | ||||||
| import torch | import torch | ||||||
| @@ -11,6 +11,28 @@ import torch.utils.data as data | |||||||
| from .synthetic_utils import TimeStamp | from .synthetic_utils import TimeStamp | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def is_list_tuple(x): | ||||||
|  |     return isinstance(x, (tuple, list)) | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def zip_sequence(sequence): | ||||||
|  |     def _combine(*alist): | ||||||
|  |         if is_list_tuple(alist[0]): | ||||||
|  |             return [_combine(*xlist) for xlist in zip(*alist)] | ||||||
|  |         else: | ||||||
|  |             return torch.cat(alist, dim=0) | ||||||
|  |  | ||||||
|  |     def unsqueeze(a): | ||||||
|  |         if is_list_tuple(a): | ||||||
|  |             return [unsqueeze(x) for x in a] | ||||||
|  |         else: | ||||||
|  |             return a.unsqueeze(dim=0) | ||||||
|  |  | ||||||
|  |     with torch.no_grad(): | ||||||
|  |         sequence = [unsqueeze(a) for a in sequence] | ||||||
|  |         return _combine(*sequence) | ||||||
|  |  | ||||||
|  |  | ||||||
| class SyntheticDEnv(data.Dataset): | class SyntheticDEnv(data.Dataset): | ||||||
|     """The synethtic dynamic environment.""" |     """The synethtic dynamic environment.""" | ||||||
|  |  | ||||||
| @@ -33,7 +55,7 @@ class SyntheticDEnv(data.Dataset): | |||||||
|         self._num_per_task = num_per_task |         self._num_per_task = num_per_task | ||||||
|         if timestamp_config is None: |         if timestamp_config is None: | ||||||
|             timestamp_config = dict(mode=mode) |             timestamp_config = dict(mode=mode) | ||||||
|         else: |         elif "mode" not in timestamp_config: | ||||||
|             timestamp_config["mode"] = mode |             timestamp_config["mode"] = mode | ||||||
|  |  | ||||||
|         self._timestamp_generator = TimeStamp(**timestamp_config) |         self._timestamp_generator = TimeStamp(**timestamp_config) | ||||||
| @@ -42,6 +64,7 @@ class SyntheticDEnv(data.Dataset): | |||||||
|         self._cov_functors = cov_functors |         self._cov_functors = cov_functors | ||||||
|  |  | ||||||
|         self._oracle_map = None |         self._oracle_map = None | ||||||
|  |         self._seq_length = None | ||||||
|  |  | ||||||
|     @property |     @property | ||||||
|     def min_timestamp(self): |     def min_timestamp(self): | ||||||
| @@ -55,7 +78,16 @@ class SyntheticDEnv(data.Dataset): | |||||||
|     def timestamp_interval(self): |     def timestamp_interval(self): | ||||||
|         return self._timestamp_generator.interval |         return self._timestamp_generator.interval | ||||||
|  |  | ||||||
|  |     def reset_max_seq_length(self, seq_length): | ||||||
|  |         self._seq_length = seq_length | ||||||
|  |  | ||||||
|     def get_timestamp(self, index): |     def get_timestamp(self, index): | ||||||
|  |         if index is None: | ||||||
|  |             timestamps = [] | ||||||
|  |             for index in range(len(self._timestamp_generator)): | ||||||
|  |                 timestamps.append(self._timestamp_generator[index][1]) | ||||||
|  |             return tuple(timestamps) | ||||||
|  |         else: | ||||||
|             index, timestamp = self._timestamp_generator[index] |             index, timestamp = self._timestamp_generator[index] | ||||||
|             return timestamp |             return timestamp | ||||||
|  |  | ||||||
| @@ -75,7 +107,14 @@ class SyntheticDEnv(data.Dataset): | |||||||
|     def __getitem__(self, index): |     def __getitem__(self, index): | ||||||
|         assert 0 <= index < len(self), "{:} is not in [0, {:})".format(index, len(self)) |         assert 0 <= index < len(self), "{:} is not in [0, {:})".format(index, len(self)) | ||||||
|         index, timestamp = self._timestamp_generator[index] |         index, timestamp = self._timestamp_generator[index] | ||||||
|  |         if self._seq_length is None: | ||||||
|             return self.__call__(timestamp) |             return self.__call__(timestamp) | ||||||
|  |         else: | ||||||
|  |             timestamps = [ | ||||||
|  |                 timestamp + i * self.timestamp_interval for i in range(self._seq_length) | ||||||
|  |             ] | ||||||
|  |             xdata = [self.__call__(timestamp) for timestamp in timestamps] | ||||||
|  |             return zip_sequence(xdata) | ||||||
|  |  | ||||||
|     def __call__(self, timestamp): |     def __call__(self, timestamp): | ||||||
|         mean_list = [functor(timestamp) for functor in self._mean_functors] |         mean_list = [functor(timestamp) for functor in self._mean_functors] | ||||||
| @@ -88,10 +127,13 @@ class SyntheticDEnv(data.Dataset): | |||||||
|             mean_list, cov_matrix, size=self._num_per_task |             mean_list, cov_matrix, size=self._num_per_task | ||||||
|         ) |         ) | ||||||
|         if self._oracle_map is None: |         if self._oracle_map is None: | ||||||
|             return timestamp, torch.Tensor(dataset) |             return torch.Tensor([timestamp]), torch.Tensor(dataset) | ||||||
|         else: |         else: | ||||||
|             targets = self._oracle_map.noise_call(dataset, timestamp) |             targets = self._oracle_map.noise_call(dataset, timestamp) | ||||||
|             return timestamp, (torch.Tensor(dataset), torch.Tensor(targets)) |             return torch.Tensor([timestamp]), ( | ||||||
|  |                 torch.Tensor(dataset), | ||||||
|  |                 torch.Tensor(targets), | ||||||
|  |             ) | ||||||
|  |  | ||||||
|     def __len__(self): |     def __len__(self): | ||||||
|         return len(self._timestamp_generator) |         return len(self._timestamp_generator) | ||||||
| @@ -104,3 +146,20 @@ class SyntheticDEnv(data.Dataset): | |||||||
|             ndim=self._ndim, |             ndim=self._ndim, | ||||||
|             num_per_task=self._num_per_task, |             num_per_task=self._num_per_task, | ||||||
|         ) |         ) | ||||||
|  |  | ||||||
|  |  | ||||||
|  | class EnvSampler: | ||||||
|  |     def __init__(self, env, batch, enlarge): | ||||||
|  |         indexes = list(range(len(env))) | ||||||
|  |         self._indexes = indexes * enlarge | ||||||
|  |         self._batch = batch | ||||||
|  |         self._iterations = len(self._indexes) // self._batch | ||||||
|  |  | ||||||
|  |     def __iter__(self): | ||||||
|  |         random.shuffle(self._indexes) | ||||||
|  |         for it in range(self._iterations): | ||||||
|  |             indexes = self._indexes[it * self._batch : (it + 1) * self._batch] | ||||||
|  |             yield indexes | ||||||
|  |  | ||||||
|  |     def __len__(self): | ||||||
|  |         return self._iterations | ||||||
|   | |||||||
| @@ -30,6 +30,7 @@ class UnifiedSplit: | |||||||
|             self._indexes = all_indexes[num_of_train + num_of_valid :] |             self._indexes = all_indexes[num_of_train + num_of_valid :] | ||||||
|         else: |         else: | ||||||
|             raise ValueError("Unkonwn mode of {:}".format(mode)) |             raise ValueError("Unkonwn mode of {:}".format(mode)) | ||||||
|  |         self._all_indexes = all_indexes | ||||||
|         self._mode = mode |         self._mode = mode | ||||||
|  |  | ||||||
|     @property |     @property | ||||||
|   | |||||||
| @@ -1,120 +0,0 @@ | |||||||
| ##################################################### |  | ||||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 # |  | ||||||
| ##################################################### |  | ||||||
| # DISABLED / NOT-FINISHED |  | ||||||
| ##################################################### |  | ||||||
| import torch |  | ||||||
| import torch.nn as nn |  | ||||||
| import torch.nn.functional as F |  | ||||||
|  |  | ||||||
| import math |  | ||||||
| from typing import Optional, Callable |  | ||||||
|  |  | ||||||
| import spaces |  | ||||||
| from .super_container import SuperSequential |  | ||||||
| from .super_linear import SuperLinear |  | ||||||
|  |  | ||||||
|  |  | ||||||
| class SuperActor(SuperModule): |  | ||||||
|     """A Actor in RL.""" |  | ||||||
|  |  | ||||||
|     def _distribution(self, obs): |  | ||||||
|         raise NotImplementedError |  | ||||||
|  |  | ||||||
|     def _log_prob_from_distribution(self, pi, act): |  | ||||||
|         raise NotImplementedError |  | ||||||
|  |  | ||||||
|     def forward_candidate(self, **kwargs): |  | ||||||
|         return self.forward_raw(**kwargs) |  | ||||||
|  |  | ||||||
|     def forward_raw(self, obs, act=None): |  | ||||||
|         # Produce action distributions for given observations, and |  | ||||||
|         # optionally compute the log likelihood of given actions under |  | ||||||
|         # those distributions. |  | ||||||
|         pi = self._distribution(obs) |  | ||||||
|         logp_a = None |  | ||||||
|         if act is not None: |  | ||||||
|             logp_a = self._log_prob_from_distribution(pi, act) |  | ||||||
|         return pi, logp_a |  | ||||||
|  |  | ||||||
|  |  | ||||||
| class SuperLfnaMetaMLP(SuperModule): |  | ||||||
|     def __init__(self, obs_dim, hidden_sizes, act_cls): |  | ||||||
|         super(SuperLfnaMetaMLP).__init__() |  | ||||||
|         self.delta_net = SuperSequential( |  | ||||||
|             SuperLinear(obs_dim, hidden_sizes[0]), |  | ||||||
|             act_cls(), |  | ||||||
|             SuperLinear(hidden_sizes[0], hidden_sizes[1]), |  | ||||||
|             act_cls(), |  | ||||||
|             SuperLinear(hidden_sizes[1], 1), |  | ||||||
|         ) |  | ||||||
|  |  | ||||||
|  |  | ||||||
| class SuperLfnaMetaMLP(SuperModule): |  | ||||||
|     def __init__(self, obs_dim, act_dim, hidden_sizes, act_cls): |  | ||||||
|         super(SuperLfnaMetaMLP).__init__() |  | ||||||
|         log_std = -0.5 * np.ones(act_dim, dtype=np.float32) |  | ||||||
|         self.log_std = torch.nn.Parameter(torch.as_tensor(log_std)) |  | ||||||
|         self.mu_net = SuperSequential( |  | ||||||
|             SuperLinear(obs_dim, hidden_sizes[0]), |  | ||||||
|             act_cls(), |  | ||||||
|             SuperLinear(hidden_sizes[0], hidden_sizes[1]), |  | ||||||
|             act_cls(), |  | ||||||
|             SuperLinear(hidden_sizes[1], act_dim), |  | ||||||
|         ) |  | ||||||
|  |  | ||||||
|     def _distribution(self, obs): |  | ||||||
|         mu = self.mu_net(obs) |  | ||||||
|         std = torch.exp(self.log_std) |  | ||||||
|         return Normal(mu, std) |  | ||||||
|  |  | ||||||
|     def _log_prob_from_distribution(self, pi, act): |  | ||||||
|         return pi.log_prob(act).sum(axis=-1) |  | ||||||
|  |  | ||||||
|     def forward_candidate(self, **kwargs): |  | ||||||
|         return self.forward_raw(**kwargs) |  | ||||||
|  |  | ||||||
|     def forward_raw(self, obs, act=None): |  | ||||||
|         # Produce action distributions for given observations, and |  | ||||||
|         # optionally compute the log likelihood of given actions under |  | ||||||
|         # those distributions. |  | ||||||
|         pi = self._distribution(obs) |  | ||||||
|         logp_a = None |  | ||||||
|         if act is not None: |  | ||||||
|             logp_a = self._log_prob_from_distribution(pi, act) |  | ||||||
|         return pi, logp_a |  | ||||||
|  |  | ||||||
|  |  | ||||||
| class SuperMLPGaussianActor(SuperModule): |  | ||||||
|     def __init__(self, obs_dim, act_dim, hidden_sizes, act_cls): |  | ||||||
|         super(SuperMLPGaussianActor).__init__() |  | ||||||
|         log_std = -0.5 * np.ones(act_dim, dtype=np.float32) |  | ||||||
|         self.log_std = torch.nn.Parameter(torch.as_tensor(log_std)) |  | ||||||
|         self.mu_net = SuperSequential( |  | ||||||
|             SuperLinear(obs_dim, hidden_sizes[0]), |  | ||||||
|             act_cls(), |  | ||||||
|             SuperLinear(hidden_sizes[0], hidden_sizes[1]), |  | ||||||
|             act_cls(), |  | ||||||
|             SuperLinear(hidden_sizes[1], act_dim), |  | ||||||
|         ) |  | ||||||
|  |  | ||||||
|     def _distribution(self, obs): |  | ||||||
|         mu = self.mu_net(obs) |  | ||||||
|         std = torch.exp(self.log_std) |  | ||||||
|         return Normal(mu, std) |  | ||||||
|  |  | ||||||
|     def _log_prob_from_distribution(self, pi, act): |  | ||||||
|         return pi.log_prob(act).sum(axis=-1) |  | ||||||
|  |  | ||||||
|     def forward_candidate(self, **kwargs): |  | ||||||
|         return self.forward_raw(**kwargs) |  | ||||||
|  |  | ||||||
|     def forward_raw(self, obs, act=None): |  | ||||||
|         # Produce action distributions for given observations, and |  | ||||||
|         # optionally compute the log likelihood of given actions under |  | ||||||
|         # those distributions. |  | ||||||
|         pi = self._distribution(obs) |  | ||||||
|         logp_a = None |  | ||||||
|         if act is not None: |  | ||||||
|             logp_a = self._log_prob_from_distribution(pi, act) |  | ||||||
|         return pi, logp_a |  | ||||||
| @@ -42,6 +42,7 @@ class SuperTransformerEncoderLayer(SuperModule): | |||||||
|         qkv_bias: BoolSpaceType = False, |         qkv_bias: BoolSpaceType = False, | ||||||
|         mlp_hidden_multiplier: IntSpaceType = 4, |         mlp_hidden_multiplier: IntSpaceType = 4, | ||||||
|         drop: Optional[float] = None, |         drop: Optional[float] = None, | ||||||
|  |         norm_affine: bool = True, | ||||||
|         act_layer: Callable[[], nn.Module] = nn.GELU, |         act_layer: Callable[[], nn.Module] = nn.GELU, | ||||||
|         order: LayerOrder = LayerOrder.PreNorm, |         order: LayerOrder = LayerOrder.PreNorm, | ||||||
|     ): |     ): | ||||||
| @@ -62,19 +63,19 @@ class SuperTransformerEncoderLayer(SuperModule): | |||||||
|             drop=drop, |             drop=drop, | ||||||
|         ) |         ) | ||||||
|         if order is LayerOrder.PreNorm: |         if order is LayerOrder.PreNorm: | ||||||
|             self.norm1 = SuperLayerNorm1D(d_model) |             self.norm1 = SuperLayerNorm1D(d_model, elementwise_affine=norm_affine) | ||||||
|             self.mha = mha |             self.mha = mha | ||||||
|             self.drop1 = nn.Dropout(drop or 0.0) |             self.drop1 = nn.Dropout(drop or 0.0) | ||||||
|             self.norm2 = SuperLayerNorm1D(d_model) |             self.norm2 = SuperLayerNorm1D(d_model, elementwise_affine=norm_affine) | ||||||
|             self.mlp = mlp |             self.mlp = mlp | ||||||
|             self.drop2 = nn.Dropout(drop or 0.0) |             self.drop2 = nn.Dropout(drop or 0.0) | ||||||
|         elif order is LayerOrder.PostNorm: |         elif order is LayerOrder.PostNorm: | ||||||
|             self.mha = mha |             self.mha = mha | ||||||
|             self.drop1 = nn.Dropout(drop or 0.0) |             self.drop1 = nn.Dropout(drop or 0.0) | ||||||
|             self.norm1 = SuperLayerNorm1D(d_model) |             self.norm1 = SuperLayerNorm1D(d_model, elementwise_affine=norm_affine) | ||||||
|             self.mlp = mlp |             self.mlp = mlp | ||||||
|             self.drop2 = nn.Dropout(drop or 0.0) |             self.drop2 = nn.Dropout(drop or 0.0) | ||||||
|             self.norm2 = SuperLayerNorm1D(d_model) |             self.norm2 = SuperLayerNorm1D(d_model, elementwise_affine=norm_affine) | ||||||
|         else: |         else: | ||||||
|             raise ValueError("Unknown order: {:}".format(order)) |             raise ValueError("Unknown order: {:}".format(order)) | ||||||
|         self._order = order |         self._order = order | ||||||
|   | |||||||
| @@ -60,4 +60,7 @@ def trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0): | |||||||
|       >>> w = torch.empty(3, 5) |       >>> w = torch.empty(3, 5) | ||||||
|       >>> nn.init.trunc_normal_(w) |       >>> nn.init.trunc_normal_(w) | ||||||
|     """ |     """ | ||||||
|  |     if isinstance(tensor, list): | ||||||
|  |         return [_no_grad_trunc_normal_(x, mean, std, a, b) for x in tensor] | ||||||
|  |     else: | ||||||
|         return _no_grad_trunc_normal_(tensor, mean, std, a, b) |         return _no_grad_trunc_normal_(tensor, mean, std, a, b) | ||||||
|   | |||||||
| @@ -23,8 +23,16 @@ class TestSynethicEnv(unittest.TestCase): | |||||||
|     def test_simple(self): |     def test_simple(self): | ||||||
|         mean_generator = ComposedSinFunc(constant=0.1) |         mean_generator = ComposedSinFunc(constant=0.1) | ||||||
|         std_generator = ConstantFunc(constant=0.5) |         std_generator = ConstantFunc(constant=0.5) | ||||||
|  |  | ||||||
|         dataset = SyntheticDEnv([mean_generator], [[std_generator]], num_per_task=5000) |         dataset = SyntheticDEnv([mean_generator], [[std_generator]], num_per_task=5000) | ||||||
|         print(dataset) |         print(dataset) | ||||||
|         for timestamp, tau in dataset: |         for timestamp, tau in dataset: | ||||||
|             assert tau.shape == (5000, 1) |             self.assertEqual(tau.shape, (5000, 1)) | ||||||
|  |  | ||||||
|  |     def test_length(self): | ||||||
|  |         mean_generator = ComposedSinFunc(constant=0.1) | ||||||
|  |         std_generator = ConstantFunc(constant=0.5) | ||||||
|  |         dataset = SyntheticDEnv([mean_generator], [[std_generator]], num_per_task=5000) | ||||||
|  |         self.assertEqual(len(dataset), 100) | ||||||
|  |  | ||||||
|  |         dataset = SyntheticDEnv([mean_generator], [[std_generator]], mode="train") | ||||||
|  |         self.assertEqual(len(dataset), 60) | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user