Update LFNA version 1.0
This commit is contained in:
		| @@ -1,7 +1,7 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # | ||||
| ##################################################### | ||||
| # python exps/LFNA/lfna.py --env_version v1 --hidden_dim 16 --layer_dim 32 --epochs 50000 | ||||
| # python exps/LFNA/lfna.py --env_version v1 | ||||
| ##################################################### | ||||
| import sys, time, copy, torch, random, argparse | ||||
| from tqdm import tqdm | ||||
| @@ -19,56 +19,82 @@ from utils import split_str2indexes | ||||
|  | ||||
| from procedures.advanced_main import basic_train_fn, basic_eval_fn | ||||
| from procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric | ||||
| from datasets.synthetic_core import get_synthetic_env | ||||
| from datasets.synthetic_core import get_synthetic_env, EnvSampler | ||||
| from models.xcore import get_model | ||||
| from xlayers import super_core, trunc_normal_ | ||||
|  | ||||
|  | ||||
| from lfna_utils import lfna_setup, train_model, TimeData | ||||
| from lfna_meta_model import LFNA_Meta | ||||
|  | ||||
| from lfna_models_v2 import HyperNet | ||||
|  | ||||
| def epoch_train(loader, meta_model, base_model, optimizer, criterion, device, logger): | ||||
|     base_model.train() | ||||
|     meta_model.train() | ||||
|     loss_meter = AverageMeter() | ||||
|     for ibatch, batch_data in enumerate(loader): | ||||
|         timestamps, (batch_seq_inputs, batch_seq_targets) = batch_data | ||||
|         timestamps = timestamps.squeeze(dim=-1).to(device) | ||||
|         batch_seq_inputs = batch_seq_inputs.to(device) | ||||
|         batch_seq_targets = batch_seq_targets.to(device) | ||||
|  | ||||
|         optimizer.zero_grad() | ||||
|  | ||||
|         batch_seq_containers = meta_model(timestamps) | ||||
|         losses = [] | ||||
|         for seq_containers, seq_inputs, seq_targets in zip( | ||||
|             batch_seq_containers, batch_seq_inputs, batch_seq_targets | ||||
|         ): | ||||
|             for container, inputs, targets in zip( | ||||
|                 seq_containers, seq_inputs, seq_targets | ||||
|             ): | ||||
|                 predictions = base_model.forward_with_container(inputs, container) | ||||
|                 loss = criterion(predictions, targets) | ||||
|                 losses.append(loss) | ||||
|         final_loss = torch.stack(losses).mean() | ||||
|         final_loss.backward() | ||||
|         optimizer.step() | ||||
|         loss_meter.update(final_loss.item()) | ||||
|     return loss_meter | ||||
|  | ||||
|  | ||||
| def main(args): | ||||
|     logger, env_info, model_kwargs = lfna_setup(args) | ||||
|     dynamic_env = env_info["dynamic_env"] | ||||
|     model = get_model(**model_kwargs) | ||||
|     model = model.to(args.device) | ||||
|     dynamic_env = get_synthetic_env(mode="train", version=args.env_version) | ||||
|     base_model = get_model(**model_kwargs) | ||||
|     base_model = base_model.to(args.device) | ||||
|     criterion = torch.nn.MSELoss() | ||||
|  | ||||
|     logger.log("There are {:} weights.".format(model.get_w_container().numel())) | ||||
|     # meta_train_range = (dynamic_env.min_timestamp, (dynamic_env.min_timestamp + dynamic_env.max_timestamp) / 2) | ||||
|     # meta_train_interval = dynamic_env.timestamp_interval | ||||
|  | ||||
|     shape_container = model.get_w_container().to_shape_container() | ||||
|     shape_container = base_model.get_w_container().to_shape_container() | ||||
|  | ||||
|     # pre-train the hypernetwork | ||||
|     timestamps = list( | ||||
|         dynamic_env.get_timestamp(index) for index in range(len(dynamic_env) // 2) | ||||
|     timestamps = dynamic_env.get_timestamp(None) | ||||
|     meta_model = LFNA_Meta(shape_container, args.layer_dim, args.time_dim, timestamps) | ||||
|     meta_model = meta_model.to(args.device) | ||||
|  | ||||
|     logger.log("The base-model has {:} weights.".format(base_model.numel())) | ||||
|     logger.log("The meta-model has {:} weights.".format(meta_model.numel())) | ||||
|  | ||||
|     batch_sampler = EnvSampler(dynamic_env, args.meta_batch, args.sampler_enlarge) | ||||
|     dynamic_env.reset_max_seq_length(args.seq_length) | ||||
|     """ | ||||
|     env_loader = torch.utils.data.DataLoader( | ||||
|         dynamic_env, | ||||
|         batch_size=args.meta_batch, | ||||
|         shuffle=True, | ||||
|         num_workers=args.workers, | ||||
|         pin_memory=True, | ||||
|     ) | ||||
|     """ | ||||
|     env_loader = torch.utils.data.DataLoader( | ||||
|         dynamic_env, | ||||
|         batch_sampler=batch_sampler, | ||||
|         num_workers=args.workers, | ||||
|         pin_memory=True, | ||||
|     ) | ||||
|  | ||||
|     hypernet = HyperNet(shape_container, args.layer_dim, args.task_dim, timestamps) | ||||
|     hypernet = hypernet.to(args.device) | ||||
|  | ||||
|     import pdb | ||||
|  | ||||
|     pdb.set_trace() | ||||
|  | ||||
|     # task_embed = torch.nn.Parameter(torch.Tensor(env_info["total"], args.task_dim)) | ||||
|     total_bar = 16 | ||||
|     task_embeds = [] | ||||
|     for i in range(total_bar): | ||||
|         tensor = torch.Tensor(1, args.task_dim).to(args.device) | ||||
|         task_embeds.append(torch.nn.Parameter(tensor)) | ||||
|     for task_embed in task_embeds: | ||||
|         trunc_normal_(task_embed, std=0.02) | ||||
|  | ||||
|     model.train() | ||||
|     hypernet.train() | ||||
|  | ||||
|     parameters = list(hypernet.parameters()) + task_embeds | ||||
|     # optimizer = torch.optim.Adam(parameters, lr=args.init_lr, amsgrad=True) | ||||
|     optimizer = torch.optim.Adam(parameters, lr=args.init_lr, weight_decay=1e-5) | ||||
|     optimizer = torch.optim.Adam( | ||||
|         meta_model.parameters(), lr=args.init_lr, weight_decay=1e-5, amsgrad=True | ||||
|     ) | ||||
|     lr_scheduler = torch.optim.lr_scheduler.MultiStepLR( | ||||
|         optimizer, | ||||
|         milestones=[ | ||||
| @@ -77,71 +103,59 @@ def main(args): | ||||
|         ], | ||||
|         gamma=0.1, | ||||
|     ) | ||||
|     logger.log("The base-model is\n{:}".format(base_model)) | ||||
|     logger.log("The meta-model is\n{:}".format(meta_model)) | ||||
|     logger.log("The optimizer is\n{:}".format(optimizer)) | ||||
|     logger.log("Per epoch iterations = {:}".format(len(env_loader))) | ||||
|  | ||||
|     # total_bar = env_info["total"] - 1 | ||||
|     # LFNA meta-training | ||||
|     loss_meter = AverageMeter() | ||||
|     per_epoch_time, start_time = AverageMeter(), time.time() | ||||
|     last_success_epoch = 0 | ||||
|     for iepoch in range(args.epochs): | ||||
|  | ||||
|         need_time = "Time Left: {:}".format( | ||||
|         head_str = "[{:}] [{:04d}/{:04d}] ".format( | ||||
|             time_string(), iepoch, args.epochs | ||||
|         ) + "Time Left: {:}".format( | ||||
|             convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True) | ||||
|         ) | ||||
|         head_str = ( | ||||
|             "[{:}] [{:04d}/{:04d}] ".format(time_string(), iepoch, args.epochs) | ||||
|             + need_time | ||||
|  | ||||
|         loss_meter = epoch_train( | ||||
|             env_loader, | ||||
|             meta_model, | ||||
|             base_model, | ||||
|             optimizer, | ||||
|             criterion, | ||||
|             args.device, | ||||
|             logger, | ||||
|         ) | ||||
|  | ||||
|         losses = [] | ||||
|         # for ibatch in range(args.meta_batch): | ||||
|         for cur_time in range(total_bar): | ||||
|             # cur_time = random.randint(0, total_bar) | ||||
|             cur_task_embed = task_embeds[cur_time] | ||||
|             cur_container = hypernet(cur_task_embed) | ||||
|             cur_x = env_info["{:}-x".format(cur_time)].to(args.device) | ||||
|             cur_y = env_info["{:}-y".format(cur_time)].to(args.device) | ||||
|             cur_dataset = TimeData(cur_time, cur_x, cur_y) | ||||
|  | ||||
|             preds = model.forward_with_container(cur_dataset.x, cur_container) | ||||
|             optimizer.zero_grad() | ||||
|             loss = criterion(preds, cur_dataset.y) | ||||
|  | ||||
|             losses.append(loss) | ||||
|  | ||||
|         final_loss = torch.stack(losses).mean() | ||||
|         final_loss.backward() | ||||
|         optimizer.step() | ||||
|         lr_scheduler.step() | ||||
|  | ||||
|         loss_meter.update(final_loss.item()) | ||||
|         if iepoch % 100 == 0: | ||||
|             logger.log( | ||||
|                 head_str | ||||
|                 + " meta-loss: {:.4f} ({:.4f}) :: lr={:.5f}, batch={:}".format( | ||||
|                     loss_meter.avg, | ||||
|                     loss_meter.val, | ||||
|                     min(lr_scheduler.get_last_lr()), | ||||
|                     len(losses), | ||||
|                 ) | ||||
|             ) | ||||
|  | ||||
|         logger.log( | ||||
|             head_str | ||||
|             + " meta-loss: {meter.avg:.4f} ({meter.count:.0f})".format(meter=loss_meter) | ||||
|             + " :: lr={:.5f}".format(min(lr_scheduler.get_last_lr())) | ||||
|         ) | ||||
|         success, best_score = meta_model.save_best(-loss_meter.avg) | ||||
|         if success: | ||||
|             logger.log("Achieve the best with best_score = {:.3f}".format(best_score)) | ||||
|             last_success_epoch = iepoch | ||||
|             save_checkpoint( | ||||
|                 { | ||||
|                     "hypernet": hypernet.state_dict(), | ||||
|                     "task_embed": task_embed, | ||||
|                     "meta_model": meta_model.state_dict(), | ||||
|                     "optimizer": optimizer.state_dict(), | ||||
|                     "lr_scheduler": lr_scheduler.state_dict(), | ||||
|                     "iepoch": iepoch, | ||||
|                     "args": args, | ||||
|                 }, | ||||
|                 logger.path("model"), | ||||
|                 logger, | ||||
|             ) | ||||
|             loss_meter.reset() | ||||
|         if iepoch - last_success_epoch >= args.early_stop_thresh: | ||||
|             logger.log("Early stop at {:}".format(iepoch)) | ||||
|             break | ||||
|  | ||||
|         per_epoch_time.update(time.time() - start_time) | ||||
|         start_time = time.time() | ||||
|  | ||||
|     print(model) | ||||
|     print(hypernet) | ||||
|  | ||||
|     w_container_per_epoch = dict() | ||||
|     for idx in range(0, total_bar): | ||||
|         future_time = env_info["{:}-timestamp".format(idx)] | ||||
| @@ -183,20 +197,26 @@ if __name__ == "__main__": | ||||
|     parser.add_argument( | ||||
|         "--hidden_dim", | ||||
|         type=int, | ||||
|         required=True, | ||||
|         default=16, | ||||
|         help="The hidden dimension.", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--layer_dim", | ||||
|         type=int, | ||||
|         required=True, | ||||
|         help="The hidden dimension.", | ||||
|         default=16, | ||||
|         help="The layer chunk dimension.", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--time_dim", | ||||
|         type=int, | ||||
|         default=16, | ||||
|         help="The timestamp dimension.", | ||||
|     ) | ||||
|     ##### | ||||
|     parser.add_argument( | ||||
|         "--init_lr", | ||||
|         type=float, | ||||
|         default=0.1, | ||||
|         default=0.01, | ||||
|         help="The initial learning rate for the optimizer (default is Adam)", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
| @@ -206,10 +226,23 @@ if __name__ == "__main__": | ||||
|         help="The batch size for the meta-model", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--epochs", | ||||
|         "--sampler_enlarge", | ||||
|         type=int, | ||||
|         default=2000, | ||||
|         help="The total number of epochs.", | ||||
|         default=5, | ||||
|         help="Enlarge the #iterations for an epoch", | ||||
|     ) | ||||
|     parser.add_argument("--epochs", type=int, default=1000, help="The total #epochs.") | ||||
|     parser.add_argument( | ||||
|         "--early_stop_thresh", | ||||
|         type=int, | ||||
|         default=50, | ||||
|         help="The maximum epochs for early stop.", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--seq_length", type=int, default=5, help="The sequence length." | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--workers", type=int, default=4, help="The number of workers in parallel." | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--device", | ||||
| @@ -223,8 +256,7 @@ if __name__ == "__main__": | ||||
|     if args.rand_seed is None or args.rand_seed < 0: | ||||
|         args.rand_seed = random.randint(1, 100000) | ||||
|     assert args.save_dir is not None, "The save dir argument can not be None" | ||||
|     args.task_dim = args.layer_dim | ||||
|     args.save_dir = "{:}-{:}-d{:}".format( | ||||
|         args.save_dir, args.env_version, args.hidden_dim | ||||
|     args.save_dir = "{:}-{:}-d{:}_{:}_{:}".format( | ||||
|         args.save_dir, args.env_version, args.hidden_dim, args.layer_dim, args.time_dim | ||||
|     ) | ||||
|     main(args) | ||||
|   | ||||
							
								
								
									
										128
									
								
								exps/LFNA/lfna_meta_model.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										128
									
								
								exps/LFNA/lfna_meta_model.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,128 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # | ||||
| ##################################################### | ||||
| import copy | ||||
| import torch | ||||
|  | ||||
| import torch.nn.functional as F | ||||
|  | ||||
| from xlayers import super_core | ||||
| from xlayers import trunc_normal_ | ||||
| from models.xcore import get_model | ||||
|  | ||||
|  | ||||
| class LFNA_Meta(super_core.SuperModule): | ||||
|     """Learning to Forecast Neural Adaptation (Meta Model Design).""" | ||||
|  | ||||
|     def __init__( | ||||
|         self, | ||||
|         shape_container, | ||||
|         layer_embeding, | ||||
|         time_embedding, | ||||
|         meta_timestamps, | ||||
|         mha_depth: int = 2, | ||||
|         dropout: float = 0.1, | ||||
|     ): | ||||
|         super(LFNA_Meta, self).__init__() | ||||
|         self._shape_container = shape_container | ||||
|         self._num_layers = len(shape_container) | ||||
|         self._numel_per_layer = [] | ||||
|         for ilayer in range(self._num_layers): | ||||
|             self._numel_per_layer.append(shape_container[ilayer].numel()) | ||||
|         self._raw_meta_timestamps = meta_timestamps | ||||
|  | ||||
|         self.register_parameter( | ||||
|             "_super_layer_embed", | ||||
|             torch.nn.Parameter(torch.Tensor(self._num_layers, layer_embeding)), | ||||
|         ) | ||||
|         self.register_parameter( | ||||
|             "_super_meta_embed", | ||||
|             torch.nn.Parameter(torch.Tensor(len(meta_timestamps), time_embedding)), | ||||
|         ) | ||||
|         self.register_buffer("_meta_timestamps", torch.Tensor(meta_timestamps)) | ||||
|  | ||||
|         # build transformer | ||||
|         layers = [] | ||||
|         for ilayer in range(mha_depth): | ||||
|             layers.append( | ||||
|                 super_core.SuperTransformerEncoderLayer( | ||||
|                     time_embedding, | ||||
|                     4, | ||||
|                     True, | ||||
|                     4, | ||||
|                     dropout, | ||||
|                     norm_affine=False, | ||||
|                     order=super_core.LayerOrder.PostNorm, | ||||
|                 ) | ||||
|             ) | ||||
|         self.meta_corrector = super_core.SuperSequential(*layers) | ||||
|  | ||||
|         model_kwargs = dict( | ||||
|             config=dict(model_type="dual_norm_mlp"), | ||||
|             input_dim=layer_embeding + time_embedding, | ||||
|             output_dim=max(self._numel_per_layer), | ||||
|             hidden_dims=[(layer_embeding + time_embedding) * 2] * 3, | ||||
|             act_cls="gelu", | ||||
|             norm_cls="layer_norm_1d", | ||||
|             dropout=dropout, | ||||
|         ) | ||||
|         self._generator = get_model(**model_kwargs) | ||||
|         # print("generator: {:}".format(self._generator)) | ||||
|  | ||||
|         # unknown token | ||||
|         self.register_parameter( | ||||
|             "_unknown_token", | ||||
|             torch.nn.Parameter(torch.Tensor(1, time_embedding)), | ||||
|         ) | ||||
|  | ||||
|         # initialization | ||||
|         trunc_normal_( | ||||
|             [self._super_layer_embed, self._super_meta_embed, self._unknown_token], | ||||
|             std=0.02, | ||||
|         ) | ||||
|  | ||||
|     def forward_raw(self, timestamps): | ||||
|         # timestamps is a batch of sequence of timestamps | ||||
|         batch, seq = timestamps.shape | ||||
|         timestamps = timestamps.unsqueeze(dim=-1) | ||||
|         meta_timestamps = self._meta_timestamps.view(1, 1, -1) | ||||
|         time_diffs = timestamps - meta_timestamps | ||||
|         time_match_v, time_match_i = torch.min(torch.abs(time_diffs), dim=-1) | ||||
|         # select corresponding meta-knowledge | ||||
|         meta_match = torch.index_select( | ||||
|             self._super_meta_embed, dim=0, index=time_match_i.view(-1) | ||||
|         ) | ||||
|         meta_match = meta_match.view(batch, seq, -1) | ||||
|         # create the probability | ||||
|         time_probs = (1 / torch.exp(time_match_v * 10)).view(batch, seq, 1) | ||||
|         time_probs[:, -1, :] = 0 | ||||
|         unknown_token = self._unknown_token.view(1, 1, -1) | ||||
|         raw_meta_embed = time_probs * meta_match + (1 - time_probs) * unknown_token | ||||
|  | ||||
|         meta_embed = self.meta_corrector(raw_meta_embed) | ||||
|         # create joint embed | ||||
|         num_layer, _ = self._super_layer_embed.shape | ||||
|         meta_embed = meta_embed.view(batch, seq, 1, -1).expand(-1, -1, num_layer, -1) | ||||
|         layer_embed = self._super_layer_embed.view(1, 1, num_layer, -1).expand( | ||||
|             batch, seq, -1, -1 | ||||
|         ) | ||||
|         joint_embed = torch.cat((meta_embed, layer_embed), dim=-1) | ||||
|         batch_weights = self._generator(joint_embed) | ||||
|         batch_containers = [] | ||||
|         for seq_weights in torch.split(batch_weights, 1): | ||||
|             seq_containers = [] | ||||
|             for weights in torch.split(seq_weights.squeeze(0), 1): | ||||
|                 weights = torch.split(weights.squeeze(0), 1) | ||||
|                 seq_containers.append(self._shape_container.translate(weights)) | ||||
|             batch_containers.append(seq_containers) | ||||
|         return batch_containers | ||||
|  | ||||
|     def forward_candidate(self, input): | ||||
|         raise NotImplementedError | ||||
|  | ||||
|     def extra_repr(self) -> str: | ||||
|         return "(_super_layer_embed): {:}, (_super_meta_embed): {:}, (_meta_timestamps): {:}".format( | ||||
|             list(self._super_layer_embed.shape), | ||||
|             list(self._super_meta_embed.shape), | ||||
|             list(self._meta_timestamps.shape), | ||||
|         ) | ||||
| @@ -1,72 +0,0 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # | ||||
| ##################################################### | ||||
| import copy | ||||
| import torch | ||||
|  | ||||
| import torch.nn.functional as F | ||||
|  | ||||
| from xlayers import super_core | ||||
| from xlayers import trunc_normal_ | ||||
| from models.xcore import get_model | ||||
|  | ||||
|  | ||||
| class HyperNet(super_core.SuperModule): | ||||
|     """The hyper-network.""" | ||||
|  | ||||
|     def __init__( | ||||
|         self, | ||||
|         shape_container, | ||||
|         layer_embeding, | ||||
|         task_embedding, | ||||
|         meta_timestamps, | ||||
|         return_container: bool = True, | ||||
|     ): | ||||
|         super(HyperNet, self).__init__() | ||||
|         self._shape_container = shape_container | ||||
|         self._num_layers = len(shape_container) | ||||
|         self._numel_per_layer = [] | ||||
|         for ilayer in range(self._num_layers): | ||||
|             self._numel_per_layer.append(shape_container[ilayer].numel()) | ||||
|  | ||||
|         self.register_parameter( | ||||
|             "_super_layer_embed", | ||||
|             torch.nn.Parameter(torch.Tensor(self._num_layers, layer_embeding)), | ||||
|         ) | ||||
|         trunc_normal_(self._super_layer_embed, std=0.02) | ||||
|  | ||||
|         model_kwargs = dict( | ||||
|             config=dict(model_type="dual_norm_mlp"), | ||||
|             input_dim=layer_embeding + task_embedding, | ||||
|             output_dim=max(self._numel_per_layer), | ||||
|             hidden_dims=[(layer_embeding + task_embedding) * 2] * 3, | ||||
|             act_cls="gelu", | ||||
|             norm_cls="layer_norm_1d", | ||||
|             dropout=0.2, | ||||
|         ) | ||||
|         import pdb | ||||
|  | ||||
|         pdb.set_trace() | ||||
|         self._generator = get_model(**model_kwargs) | ||||
|         self._return_container = return_container | ||||
|         print("generator: {:}".format(self._generator)) | ||||
|  | ||||
|     def forward_raw(self, task_embed): | ||||
|         # task_embed = F.normalize(task_embed, dim=-1, p=2) | ||||
|         # layer_embed = F.normalize(self._super_layer_embed, dim=-1, p=2) | ||||
|         layer_embed = self._super_layer_embed | ||||
|         task_embed = task_embed.view(1, -1).expand(self._num_layers, -1) | ||||
|  | ||||
|         joint_embed = torch.cat((task_embed, layer_embed), dim=-1) | ||||
|         weights = self._generator(joint_embed) | ||||
|         if self._return_container: | ||||
|             weights = torch.split(weights, 1) | ||||
|             return self._shape_container.translate(weights) | ||||
|         else: | ||||
|             return weights | ||||
|  | ||||
|     def forward_candidate(self, input): | ||||
|         raise NotImplementedError | ||||
|  | ||||
|     def extra_repr(self) -> str: | ||||
|         return "(_super_layer_embed): {:}".format(list(self._super_layer_embed.shape)) | ||||
| @@ -225,8 +225,8 @@ def visualize_env(save_dir, version): | ||||
| def compare_algs(save_dir, version, alg_dir="./outputs/lfna-synthetic"): | ||||
|     save_dir = Path(str(save_dir)) | ||||
|     for substr in ("pdf", "png"): | ||||
|       sub_save_dir = save_dir / substr | ||||
|       sub_save_dir.mkdir(parents=True, exist_ok=True) | ||||
|         sub_save_dir = save_dir / substr | ||||
|         sub_save_dir.mkdir(parents=True, exist_ok=True) | ||||
|  | ||||
|     dpi, width, height = 30, 3200, 2000 | ||||
|     figsize = width / float(dpi), height / float(dpi) | ||||
|   | ||||
| @@ -2,6 +2,7 @@ | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.05 # | ||||
| ##################################################### | ||||
| from .synthetic_utils import TimeStamp | ||||
| from .synthetic_env import EnvSampler | ||||
| from .synthetic_env import SyntheticDEnv | ||||
| from .math_core import LinearFunc | ||||
| from .math_core import DynamicLinearFunc | ||||
|   | ||||
| @@ -2,7 +2,7 @@ | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # | ||||
| ##################################################### | ||||
| import math | ||||
| import abc | ||||
| import random | ||||
| import numpy as np | ||||
| from typing import List, Optional, Dict | ||||
| import torch | ||||
| @@ -11,6 +11,28 @@ import torch.utils.data as data | ||||
| from .synthetic_utils import TimeStamp | ||||
|  | ||||
|  | ||||
| def is_list_tuple(x): | ||||
|     return isinstance(x, (tuple, list)) | ||||
|  | ||||
|  | ||||
| def zip_sequence(sequence): | ||||
|     def _combine(*alist): | ||||
|         if is_list_tuple(alist[0]): | ||||
|             return [_combine(*xlist) for xlist in zip(*alist)] | ||||
|         else: | ||||
|             return torch.cat(alist, dim=0) | ||||
|  | ||||
|     def unsqueeze(a): | ||||
|         if is_list_tuple(a): | ||||
|             return [unsqueeze(x) for x in a] | ||||
|         else: | ||||
|             return a.unsqueeze(dim=0) | ||||
|  | ||||
|     with torch.no_grad(): | ||||
|         sequence = [unsqueeze(a) for a in sequence] | ||||
|         return _combine(*sequence) | ||||
|  | ||||
|  | ||||
| class SyntheticDEnv(data.Dataset): | ||||
|     """The synethtic dynamic environment.""" | ||||
|  | ||||
| @@ -33,7 +55,7 @@ class SyntheticDEnv(data.Dataset): | ||||
|         self._num_per_task = num_per_task | ||||
|         if timestamp_config is None: | ||||
|             timestamp_config = dict(mode=mode) | ||||
|         else: | ||||
|         elif "mode" not in timestamp_config: | ||||
|             timestamp_config["mode"] = mode | ||||
|  | ||||
|         self._timestamp_generator = TimeStamp(**timestamp_config) | ||||
| @@ -42,6 +64,7 @@ class SyntheticDEnv(data.Dataset): | ||||
|         self._cov_functors = cov_functors | ||||
|  | ||||
|         self._oracle_map = None | ||||
|         self._seq_length = None | ||||
|  | ||||
|     @property | ||||
|     def min_timestamp(self): | ||||
| @@ -55,9 +78,18 @@ class SyntheticDEnv(data.Dataset): | ||||
|     def timestamp_interval(self): | ||||
|         return self._timestamp_generator.interval | ||||
|  | ||||
|     def reset_max_seq_length(self, seq_length): | ||||
|         self._seq_length = seq_length | ||||
|  | ||||
|     def get_timestamp(self, index): | ||||
|         index, timestamp = self._timestamp_generator[index] | ||||
|         return timestamp | ||||
|         if index is None: | ||||
|             timestamps = [] | ||||
|             for index in range(len(self._timestamp_generator)): | ||||
|                 timestamps.append(self._timestamp_generator[index][1]) | ||||
|             return tuple(timestamps) | ||||
|         else: | ||||
|             index, timestamp = self._timestamp_generator[index] | ||||
|             return timestamp | ||||
|  | ||||
|     def set_oracle_map(self, functor): | ||||
|         self._oracle_map = functor | ||||
| @@ -75,7 +107,14 @@ class SyntheticDEnv(data.Dataset): | ||||
|     def __getitem__(self, index): | ||||
|         assert 0 <= index < len(self), "{:} is not in [0, {:})".format(index, len(self)) | ||||
|         index, timestamp = self._timestamp_generator[index] | ||||
|         return self.__call__(timestamp) | ||||
|         if self._seq_length is None: | ||||
|             return self.__call__(timestamp) | ||||
|         else: | ||||
|             timestamps = [ | ||||
|                 timestamp + i * self.timestamp_interval for i in range(self._seq_length) | ||||
|             ] | ||||
|             xdata = [self.__call__(timestamp) for timestamp in timestamps] | ||||
|             return zip_sequence(xdata) | ||||
|  | ||||
|     def __call__(self, timestamp): | ||||
|         mean_list = [functor(timestamp) for functor in self._mean_functors] | ||||
| @@ -88,10 +127,13 @@ class SyntheticDEnv(data.Dataset): | ||||
|             mean_list, cov_matrix, size=self._num_per_task | ||||
|         ) | ||||
|         if self._oracle_map is None: | ||||
|             return timestamp, torch.Tensor(dataset) | ||||
|             return torch.Tensor([timestamp]), torch.Tensor(dataset) | ||||
|         else: | ||||
|             targets = self._oracle_map.noise_call(dataset, timestamp) | ||||
|             return timestamp, (torch.Tensor(dataset), torch.Tensor(targets)) | ||||
|             return torch.Tensor([timestamp]), ( | ||||
|                 torch.Tensor(dataset), | ||||
|                 torch.Tensor(targets), | ||||
|             ) | ||||
|  | ||||
|     def __len__(self): | ||||
|         return len(self._timestamp_generator) | ||||
| @@ -104,3 +146,20 @@ class SyntheticDEnv(data.Dataset): | ||||
|             ndim=self._ndim, | ||||
|             num_per_task=self._num_per_task, | ||||
|         ) | ||||
|  | ||||
|  | ||||
| class EnvSampler: | ||||
|     def __init__(self, env, batch, enlarge): | ||||
|         indexes = list(range(len(env))) | ||||
|         self._indexes = indexes * enlarge | ||||
|         self._batch = batch | ||||
|         self._iterations = len(self._indexes) // self._batch | ||||
|  | ||||
|     def __iter__(self): | ||||
|         random.shuffle(self._indexes) | ||||
|         for it in range(self._iterations): | ||||
|             indexes = self._indexes[it * self._batch : (it + 1) * self._batch] | ||||
|             yield indexes | ||||
|  | ||||
|     def __len__(self): | ||||
|         return self._iterations | ||||
|   | ||||
| @@ -30,6 +30,7 @@ class UnifiedSplit: | ||||
|             self._indexes = all_indexes[num_of_train + num_of_valid :] | ||||
|         else: | ||||
|             raise ValueError("Unkonwn mode of {:}".format(mode)) | ||||
|         self._all_indexes = all_indexes | ||||
|         self._mode = mode | ||||
|  | ||||
|     @property | ||||
|   | ||||
| @@ -1,120 +0,0 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 # | ||||
| ##################################################### | ||||
| # DISABLED / NOT-FINISHED | ||||
| ##################################################### | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| import torch.nn.functional as F | ||||
|  | ||||
| import math | ||||
| from typing import Optional, Callable | ||||
|  | ||||
| import spaces | ||||
| from .super_container import SuperSequential | ||||
| from .super_linear import SuperLinear | ||||
|  | ||||
|  | ||||
| class SuperActor(SuperModule): | ||||
|     """A Actor in RL.""" | ||||
|  | ||||
|     def _distribution(self, obs): | ||||
|         raise NotImplementedError | ||||
|  | ||||
|     def _log_prob_from_distribution(self, pi, act): | ||||
|         raise NotImplementedError | ||||
|  | ||||
|     def forward_candidate(self, **kwargs): | ||||
|         return self.forward_raw(**kwargs) | ||||
|  | ||||
|     def forward_raw(self, obs, act=None): | ||||
|         # Produce action distributions for given observations, and | ||||
|         # optionally compute the log likelihood of given actions under | ||||
|         # those distributions. | ||||
|         pi = self._distribution(obs) | ||||
|         logp_a = None | ||||
|         if act is not None: | ||||
|             logp_a = self._log_prob_from_distribution(pi, act) | ||||
|         return pi, logp_a | ||||
|  | ||||
|  | ||||
| class SuperLfnaMetaMLP(SuperModule): | ||||
|     def __init__(self, obs_dim, hidden_sizes, act_cls): | ||||
|         super(SuperLfnaMetaMLP).__init__() | ||||
|         self.delta_net = SuperSequential( | ||||
|             SuperLinear(obs_dim, hidden_sizes[0]), | ||||
|             act_cls(), | ||||
|             SuperLinear(hidden_sizes[0], hidden_sizes[1]), | ||||
|             act_cls(), | ||||
|             SuperLinear(hidden_sizes[1], 1), | ||||
|         ) | ||||
|  | ||||
|  | ||||
| class SuperLfnaMetaMLP(SuperModule): | ||||
|     def __init__(self, obs_dim, act_dim, hidden_sizes, act_cls): | ||||
|         super(SuperLfnaMetaMLP).__init__() | ||||
|         log_std = -0.5 * np.ones(act_dim, dtype=np.float32) | ||||
|         self.log_std = torch.nn.Parameter(torch.as_tensor(log_std)) | ||||
|         self.mu_net = SuperSequential( | ||||
|             SuperLinear(obs_dim, hidden_sizes[0]), | ||||
|             act_cls(), | ||||
|             SuperLinear(hidden_sizes[0], hidden_sizes[1]), | ||||
|             act_cls(), | ||||
|             SuperLinear(hidden_sizes[1], act_dim), | ||||
|         ) | ||||
|  | ||||
|     def _distribution(self, obs): | ||||
|         mu = self.mu_net(obs) | ||||
|         std = torch.exp(self.log_std) | ||||
|         return Normal(mu, std) | ||||
|  | ||||
|     def _log_prob_from_distribution(self, pi, act): | ||||
|         return pi.log_prob(act).sum(axis=-1) | ||||
|  | ||||
|     def forward_candidate(self, **kwargs): | ||||
|         return self.forward_raw(**kwargs) | ||||
|  | ||||
|     def forward_raw(self, obs, act=None): | ||||
|         # Produce action distributions for given observations, and | ||||
|         # optionally compute the log likelihood of given actions under | ||||
|         # those distributions. | ||||
|         pi = self._distribution(obs) | ||||
|         logp_a = None | ||||
|         if act is not None: | ||||
|             logp_a = self._log_prob_from_distribution(pi, act) | ||||
|         return pi, logp_a | ||||
|  | ||||
|  | ||||
| class SuperMLPGaussianActor(SuperModule): | ||||
|     def __init__(self, obs_dim, act_dim, hidden_sizes, act_cls): | ||||
|         super(SuperMLPGaussianActor).__init__() | ||||
|         log_std = -0.5 * np.ones(act_dim, dtype=np.float32) | ||||
|         self.log_std = torch.nn.Parameter(torch.as_tensor(log_std)) | ||||
|         self.mu_net = SuperSequential( | ||||
|             SuperLinear(obs_dim, hidden_sizes[0]), | ||||
|             act_cls(), | ||||
|             SuperLinear(hidden_sizes[0], hidden_sizes[1]), | ||||
|             act_cls(), | ||||
|             SuperLinear(hidden_sizes[1], act_dim), | ||||
|         ) | ||||
|  | ||||
|     def _distribution(self, obs): | ||||
|         mu = self.mu_net(obs) | ||||
|         std = torch.exp(self.log_std) | ||||
|         return Normal(mu, std) | ||||
|  | ||||
|     def _log_prob_from_distribution(self, pi, act): | ||||
|         return pi.log_prob(act).sum(axis=-1) | ||||
|  | ||||
|     def forward_candidate(self, **kwargs): | ||||
|         return self.forward_raw(**kwargs) | ||||
|  | ||||
|     def forward_raw(self, obs, act=None): | ||||
|         # Produce action distributions for given observations, and | ||||
|         # optionally compute the log likelihood of given actions under | ||||
|         # those distributions. | ||||
|         pi = self._distribution(obs) | ||||
|         logp_a = None | ||||
|         if act is not None: | ||||
|             logp_a = self._log_prob_from_distribution(pi, act) | ||||
|         return pi, logp_a | ||||
| @@ -42,6 +42,7 @@ class SuperTransformerEncoderLayer(SuperModule): | ||||
|         qkv_bias: BoolSpaceType = False, | ||||
|         mlp_hidden_multiplier: IntSpaceType = 4, | ||||
|         drop: Optional[float] = None, | ||||
|         norm_affine: bool = True, | ||||
|         act_layer: Callable[[], nn.Module] = nn.GELU, | ||||
|         order: LayerOrder = LayerOrder.PreNorm, | ||||
|     ): | ||||
| @@ -62,19 +63,19 @@ class SuperTransformerEncoderLayer(SuperModule): | ||||
|             drop=drop, | ||||
|         ) | ||||
|         if order is LayerOrder.PreNorm: | ||||
|             self.norm1 = SuperLayerNorm1D(d_model) | ||||
|             self.norm1 = SuperLayerNorm1D(d_model, elementwise_affine=norm_affine) | ||||
|             self.mha = mha | ||||
|             self.drop1 = nn.Dropout(drop or 0.0) | ||||
|             self.norm2 = SuperLayerNorm1D(d_model) | ||||
|             self.norm2 = SuperLayerNorm1D(d_model, elementwise_affine=norm_affine) | ||||
|             self.mlp = mlp | ||||
|             self.drop2 = nn.Dropout(drop or 0.0) | ||||
|         elif order is LayerOrder.PostNorm: | ||||
|             self.mha = mha | ||||
|             self.drop1 = nn.Dropout(drop or 0.0) | ||||
|             self.norm1 = SuperLayerNorm1D(d_model) | ||||
|             self.norm1 = SuperLayerNorm1D(d_model, elementwise_affine=norm_affine) | ||||
|             self.mlp = mlp | ||||
|             self.drop2 = nn.Dropout(drop or 0.0) | ||||
|             self.norm2 = SuperLayerNorm1D(d_model) | ||||
|             self.norm2 = SuperLayerNorm1D(d_model, elementwise_affine=norm_affine) | ||||
|         else: | ||||
|             raise ValueError("Unknown order: {:}".format(order)) | ||||
|         self._order = order | ||||
|   | ||||
| @@ -60,4 +60,7 @@ def trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0): | ||||
|       >>> w = torch.empty(3, 5) | ||||
|       >>> nn.init.trunc_normal_(w) | ||||
|     """ | ||||
|     return _no_grad_trunc_normal_(tensor, mean, std, a, b) | ||||
|     if isinstance(tensor, list): | ||||
|         return [_no_grad_trunc_normal_(x, mean, std, a, b) for x in tensor] | ||||
|     else: | ||||
|         return _no_grad_trunc_normal_(tensor, mean, std, a, b) | ||||
|   | ||||
| @@ -23,8 +23,16 @@ class TestSynethicEnv(unittest.TestCase): | ||||
|     def test_simple(self): | ||||
|         mean_generator = ComposedSinFunc(constant=0.1) | ||||
|         std_generator = ConstantFunc(constant=0.5) | ||||
|  | ||||
|         dataset = SyntheticDEnv([mean_generator], [[std_generator]], num_per_task=5000) | ||||
|         print(dataset) | ||||
|         for timestamp, tau in dataset: | ||||
|             assert tau.shape == (5000, 1) | ||||
|             self.assertEqual(tau.shape, (5000, 1)) | ||||
|  | ||||
|     def test_length(self): | ||||
|         mean_generator = ComposedSinFunc(constant=0.1) | ||||
|         std_generator = ConstantFunc(constant=0.5) | ||||
|         dataset = SyntheticDEnv([mean_generator], [[std_generator]], num_per_task=5000) | ||||
|         self.assertEqual(len(dataset), 100) | ||||
|  | ||||
|         dataset = SyntheticDEnv([mean_generator], [[std_generator]], mode="train") | ||||
|         self.assertEqual(len(dataset), 60) | ||||
|   | ||||
		Reference in New Issue
	
	Block a user