Update LFNA with resume
This commit is contained in:
parent
b11cfe263d
commit
de8cf677d9
@ -101,21 +101,49 @@ def main(args):
|
|||||||
)
|
)
|
||||||
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
|
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
|
||||||
optimizer,
|
optimizer,
|
||||||
milestones=[
|
milestones=[1, 2],
|
||||||
int(args.epochs * 0.8),
|
|
||||||
int(args.epochs * 0.9),
|
|
||||||
],
|
|
||||||
gamma=0.1,
|
gamma=0.1,
|
||||||
)
|
)
|
||||||
logger.log("The base-model is\n{:}".format(base_model))
|
logger.log("The base-model is\n{:}".format(base_model))
|
||||||
logger.log("The meta-model is\n{:}".format(meta_model))
|
logger.log("The meta-model is\n{:}".format(meta_model))
|
||||||
logger.log("The optimizer is\n{:}".format(optimizer))
|
logger.log("The optimizer is\n{:}".format(optimizer))
|
||||||
|
logger.log("The scheduler is\n{:}".format(lr_scheduler))
|
||||||
logger.log("Per epoch iterations = {:}".format(len(env_loader)))
|
logger.log("Per epoch iterations = {:}".format(len(env_loader)))
|
||||||
|
|
||||||
# LFNA meta-training
|
if logger.path("model").exists():
|
||||||
|
ckp_data = torch.load(logger.path("model"))
|
||||||
|
base_model.load_state_dict(ckp_data["base_model"])
|
||||||
|
meta_model.load_state_dict(ckp_data["meta_model"])
|
||||||
|
optimizer.load_state_dict(ckp_data["optimizer"])
|
||||||
|
lr_scheduler.load_state_dict(ckp_data["lr_scheduler"])
|
||||||
|
last_success_epoch = ckp_data["last_success_epoch"]
|
||||||
|
start_epoch = ckp_data["iepoch"] + 1
|
||||||
|
check_strs = [
|
||||||
|
"epochs",
|
||||||
|
"env_version",
|
||||||
|
"hidden_dim",
|
||||||
|
"init_lr",
|
||||||
|
"layer_dim",
|
||||||
|
"time_dim",
|
||||||
|
"seq_length",
|
||||||
|
]
|
||||||
|
for xstr in check_strs:
|
||||||
|
cx = getattr(args, xstr)
|
||||||
|
px = getattr(ckp_data["args"], xstr)
|
||||||
|
assert cx == px, "[{:}] {:} vs {:}".format(xstr, cx, ps)
|
||||||
|
success, _ = meta_model.save_best(ckp_data["cur_score"])
|
||||||
|
logger.log("Load ckp from {:}".format(logger.path("model")))
|
||||||
|
if success:
|
||||||
|
logger.log(
|
||||||
|
"Re-save the best model with score={:}".format(ckp_data["cur_score"])
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
start_epoch, last_success_epoch = 0, 0
|
||||||
|
|
||||||
|
# LFNA meta-train
|
||||||
|
meta_model.set_best_dir(logger.path(None) / "checkpoint")
|
||||||
per_epoch_time, start_time = AverageMeter(), time.time()
|
per_epoch_time, start_time = AverageMeter(), time.time()
|
||||||
last_success_epoch = 0
|
for iepoch in range(start_epoch, args.epochs):
|
||||||
for iepoch in range(args.epochs):
|
|
||||||
|
|
||||||
head_str = "[{:}] [{:04d}/{:04d}] ".format(
|
head_str = "[{:}] [{:04d}/{:04d}] ".format(
|
||||||
time_string(), iepoch, args.epochs
|
time_string(), iepoch, args.epochs
|
||||||
@ -132,11 +160,11 @@ def main(args):
|
|||||||
args.device,
|
args.device,
|
||||||
logger,
|
logger,
|
||||||
)
|
)
|
||||||
lr_scheduler.step()
|
|
||||||
logger.log(
|
logger.log(
|
||||||
head_str
|
head_str
|
||||||
+ " meta-loss: {meter.avg:.4f} ({meter.count:.0f})".format(meter=loss_meter)
|
+ " meta-loss: {meter.avg:.4f} ({meter.count:.0f})".format(meter=loss_meter)
|
||||||
+ " :: lr={:.5f}".format(min(lr_scheduler.get_last_lr()))
|
+ " :: lr={:.5f}".format(min(lr_scheduler.get_last_lr()))
|
||||||
|
+ " :: last-success={:}".format(last_success_epoch)
|
||||||
)
|
)
|
||||||
success, best_score = meta_model.save_best(-loss_meter.avg)
|
success, best_score = meta_model.save_best(-loss_meter.avg)
|
||||||
if success:
|
if success:
|
||||||
@ -145,8 +173,11 @@ def main(args):
|
|||||||
save_checkpoint(
|
save_checkpoint(
|
||||||
{
|
{
|
||||||
"meta_model": meta_model.state_dict(),
|
"meta_model": meta_model.state_dict(),
|
||||||
|
"base_model": base_model.state_dict(),
|
||||||
"optimizer": optimizer.state_dict(),
|
"optimizer": optimizer.state_dict(),
|
||||||
"lr_scheduler": lr_scheduler.state_dict(),
|
"lr_scheduler": lr_scheduler.state_dict(),
|
||||||
|
"last_success_epoch": last_success_epoch,
|
||||||
|
"cur_score": -loss_meter.avg,
|
||||||
"iepoch": iepoch,
|
"iepoch": iepoch,
|
||||||
"args": args,
|
"args": args,
|
||||||
},
|
},
|
||||||
@ -154,8 +185,12 @@ def main(args):
|
|||||||
logger,
|
logger,
|
||||||
)
|
)
|
||||||
if iepoch - last_success_epoch >= args.early_stop_thresh:
|
if iepoch - last_success_epoch >= args.early_stop_thresh:
|
||||||
logger.log("Early stop at {:}".format(iepoch))
|
if lr_scheduler.last_epoch > 2:
|
||||||
break
|
logger.log("Early stop at {:}".format(iepoch))
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
last_epoch.step()
|
||||||
|
logger.log("Decay the lr [{:}]".format(lr_scheduler.last_epoch))
|
||||||
|
|
||||||
per_epoch_time.update(time.time() - start_time)
|
per_epoch_time.update(time.time() - start_time)
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
@ -199,7 +234,7 @@ def main(args):
|
|||||||
[new_param], lr=args.init_lr, weight_decay=1e-5, amsgrad=True
|
[new_param], lr=args.init_lr, weight_decay=1e-5, amsgrad=True
|
||||||
)
|
)
|
||||||
meta_model.replace_append_learnt(
|
meta_model.replace_append_learnt(
|
||||||
torch.Tensor([future_time], device=args.device), new_param
|
torch.Tensor([future_time]).to(args.device), new_param
|
||||||
)
|
)
|
||||||
meta_model.eval()
|
meta_model.eval()
|
||||||
base_model.train()
|
base_model.train()
|
||||||
@ -289,8 +324,8 @@ if __name__ == "__main__":
|
|||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--early_stop_thresh",
|
"--early_stop_thresh",
|
||||||
type=int,
|
type=int,
|
||||||
default=100,
|
default=50,
|
||||||
help="The maximum epochs for early stop.",
|
help="The #epochs for early stop.",
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--seq_length", type=int, default=5, help="The sequence length."
|
"--seq_length", type=int, default=5, help="The sequence length."
|
||||||
|
@ -102,9 +102,11 @@ class LFNA_Meta(super_core.SuperModule):
|
|||||||
return torch.cat(meta_embed)
|
return torch.cat(meta_embed)
|
||||||
|
|
||||||
def create_meta_embed(self):
|
def create_meta_embed(self):
|
||||||
param = torch.nn.Parameter(torch.Tensor(1, self._time_embed_dim))
|
param = torch.Tensor(1, self._time_embed_dim)
|
||||||
trunc_normal_(param, std=0.02)
|
trunc_normal_(param, std=0.02)
|
||||||
return param.to(self._super_meta_embed.device)
|
param = param.to(self._super_meta_embed.device)
|
||||||
|
param = torch.nn.Parameter(param, True)
|
||||||
|
return param
|
||||||
|
|
||||||
def get_closest_meta_distance(self, timestamp):
|
def get_closest_meta_distance(self, timestamp):
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
@ -112,12 +114,14 @@ class LFNA_Meta(super_core.SuperModule):
|
|||||||
return torch.min(distances).item()
|
return torch.min(distances).item()
|
||||||
|
|
||||||
def replace_append_learnt(self, timestamp, meta_embed):
|
def replace_append_learnt(self, timestamp, meta_embed):
|
||||||
self._append_meta_embed["learnt"] = meta_embed
|
|
||||||
self._append_meta_timestamps["learnt"] = timestamp
|
self._append_meta_timestamps["learnt"] = timestamp
|
||||||
|
self._append_meta_embed["learnt"] = meta_embed
|
||||||
|
|
||||||
def append_fixed(self, timestamp, meta_embed):
|
def append_fixed(self, timestamp, meta_embed):
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
timestamp, meta_embed = timestamp.clone(), meta_embed.clone()
|
device = self._super_meta_embed.device
|
||||||
|
timestamp = timestamp.detach().clone().to(device)
|
||||||
|
meta_embed = meta_embed.detach().clone().to(device)
|
||||||
if self._append_meta_timestamps["fixed"] is None:
|
if self._append_meta_timestamps["fixed"] is None:
|
||||||
self._append_meta_timestamps["fixed"] = timestamp
|
self._append_meta_timestamps["fixed"] = timestamp
|
||||||
else:
|
else:
|
||||||
|
@ -3,6 +3,7 @@
|
|||||||
#####################################################
|
#####################################################
|
||||||
|
|
||||||
import os
|
import os
|
||||||
|
from pathlib import Path
|
||||||
import abc
|
import abc
|
||||||
import tempfile
|
import tempfile
|
||||||
import warnings
|
import warnings
|
||||||
@ -90,6 +91,10 @@ class SuperModule(abc.ABC, nn.Module):
|
|||||||
total += buf.numel()
|
total += buf.numel()
|
||||||
return total
|
return total
|
||||||
|
|
||||||
|
def set_best_dir(self, xdir):
|
||||||
|
self._meta_info[BEST_DIR_KEY] = str(xdir)
|
||||||
|
Path(xdir).mkdir(parents=True, exist_ok=True)
|
||||||
|
|
||||||
def save_best(self, score):
|
def save_best(self, score):
|
||||||
if BEST_DIR_KEY not in self._meta_info:
|
if BEST_DIR_KEY not in self._meta_info:
|
||||||
tempdir = tempfile.mkdtemp("-xlayers")
|
tempdir = tempfile.mkdtemp("-xlayers")
|
||||||
@ -97,7 +102,7 @@ class SuperModule(abc.ABC, nn.Module):
|
|||||||
if BEST_SCORE_KEY not in self._meta_info:
|
if BEST_SCORE_KEY not in self._meta_info:
|
||||||
self._meta_info[BEST_SCORE_KEY] = None
|
self._meta_info[BEST_SCORE_KEY] = None
|
||||||
best_score = self._meta_info[BEST_SCORE_KEY]
|
best_score = self._meta_info[BEST_SCORE_KEY]
|
||||||
if best_score is None or best_score < score:
|
if best_score is None or best_score <= score:
|
||||||
best_save_path = os.path.join(
|
best_save_path = os.path.join(
|
||||||
self._meta_info[BEST_DIR_KEY],
|
self._meta_info[BEST_DIR_KEY],
|
||||||
"best-{:}.pth".format(self.__class__.__name__),
|
"best-{:}.pth".format(self.__class__.__name__),
|
||||||
|
Loading…
Reference in New Issue
Block a user