update tf-GDAS
This commit is contained in:
		| @@ -1,5 +1,5 @@ | ||||
| # CUDA_VISIBLE_DEVICES=0 python exps-tf/GDAS.py | ||||
| import os, sys, time, random, argparse | ||||
| import os, sys, math, time, random, argparse | ||||
| import tensorflow as tf | ||||
| from pathlib import Path | ||||
|  | ||||
| @@ -23,6 +23,24 @@ def pre_process(image_a, label_a, image_b, label_b): | ||||
|   return standard_func(image_a), label_a, standard_func(image_b), label_b | ||||
|  | ||||
|  | ||||
| class CosineAnnealingLR(object): | ||||
|   def __init__(self, warmup_epochs, epochs, initial_lr, min_lr): | ||||
|     self.warmup_epochs = warmup_epochs | ||||
|     self.epochs = epochs | ||||
|     self.initial_lr = initial_lr | ||||
|     self.min_lr = min_lr | ||||
|  | ||||
|   def get_lr(self, epoch): | ||||
|     if epoch < self.warmup_epochs: | ||||
|       lr = self.min_lr + (epoch/self.warmup_epochs) * (self.initial_lr-self.min_lr) | ||||
|     elif epoch >= self.epochs: | ||||
|       lr = self.min_lr | ||||
|     else: | ||||
|       lr = self.min_lr + (self.initial_lr-self.min_lr) * 0.5 * (1 + math.cos(math.pi * epoch / self.epochs)) | ||||
|     return lr | ||||
|        | ||||
|  | ||||
|  | ||||
| def main(xargs): | ||||
|   cifar10 = tf.keras.datasets.cifar10 | ||||
|  | ||||
| @@ -50,13 +68,12 @@ def main(xargs): | ||||
|                         'C'   : xargs.channel, 'N': xargs.num_cells, 'max_nodes': xargs.max_nodes, | ||||
|                         'num_classes': 10, 'space': 'nas-bench-201', 'affine': True}, None) | ||||
|   model = get_cell_based_tiny_net(config) | ||||
|   #import pdb; pdb.set_trace() | ||||
|   #model.build(((64, 32, 32, 3), (1,))) | ||||
|   #for x in model.trainable_variables: | ||||
|   #  print('{:30s} : {:}'.format(x.name, x.shape)) | ||||
|   num_iters_per_epoch = int(tf.data.experimental.cardinality(search_ds).numpy()) | ||||
|   #lr_schedular = tf.keras.experimental.CosineDecay(xargs.w_lr_max, num_iters_per_epoch*xargs.epochs, xargs.w_lr_min / xargs.w_lr_max) | ||||
|   lr_schedular = CosineAnnealingLR(0, xargs.epochs, xargs.w_lr_max, xargs.w_lr_min) | ||||
|   # Choose optimizer | ||||
|   loss_object = tf.keras.losses.SparseCategoricalCrossentropy() | ||||
|   w_optimizer = SGDW(learning_rate=xargs.w_lr, weight_decay=xargs.w_weight_decay, momentum=xargs.w_momentum, nesterov=True) | ||||
|   w_optimizer = SGDW(learning_rate=xargs.w_lr_max, weight_decay=xargs.w_weight_decay, momentum=xargs.w_momentum, nesterov=True) | ||||
|   a_optimizer = AdamW(learning_rate=xargs.arch_learning_rate, weight_decay=xargs.arch_weight_decay, beta_1=0.5, beta_2=0.999, epsilon=1e-07) | ||||
|   #w_optimizer = tf.keras.optimizers.SGD(learning_rate=0.025, momentum=0.9, nesterov=True) | ||||
|   #a_optimizer = tf.keras.optimizers.AdamW(learning_rate=xargs.arch_learning_rate, beta_1=0.5, beta_2=0.999, epsilon=1e-07) | ||||
| @@ -99,7 +116,7 @@ def main(xargs): | ||||
|     test_loss(t_loss) | ||||
|     test_accuracy(labels, predictions) | ||||
|  | ||||
|   print('{:} start searching with {:} epochs ({:} batches per epoch).'.format(time_string(), xargs.epochs, tf.data.experimental.cardinality(search_ds).numpy())) | ||||
|   print('{:} start searching with {:} epochs ({:} batches per epoch).'.format(time_string(), xargs.epochs, num_iters_per_epoch)) | ||||
|  | ||||
|   for epoch in range(xargs.epochs): | ||||
|     # Reset the metrics at the start of the next epoch | ||||
| @@ -107,6 +124,8 @@ def main(xargs): | ||||
|     test_loss.reset_states()  ; test_accuracy.reset_states() | ||||
|     cur_tau = xargs.tau_max - (xargs.tau_max-xargs.tau_min) * epoch / (xargs.epochs-1) | ||||
|     tf_tau  = tf.cast(cur_tau, dtype=tf.float32, name='tau') | ||||
|     cur_lr  = lr_schedular.get_lr(epoch) | ||||
|     tf.keras.backend.set_value(w_optimizer.lr, cur_lr) | ||||
|  | ||||
|     for trn_imgs, trn_labels, val_imgs, val_labels in search_ds: | ||||
|       search_step(trn_imgs, trn_labels, val_imgs, val_labels, tf_tau) | ||||
| @@ -116,22 +135,26 @@ def main(xargs): | ||||
|     #for test_images, test_labels in test_ds: | ||||
|     #  test_step(test_images, test_labels) | ||||
|  | ||||
|     template = '{:} Epoch {:03d}/{:03d}, Train-Loss: {:.3f}, Train-Accuracy: {:.2f}%, Valid-Loss: {:.3f}, Valid-Accuracy: {:.2f}% | tau={:.3f}' | ||||
|     cur_lr = float(tf.keras.backend.get_value(w_optimizer.lr)) | ||||
|     template = '{:} Epoch {:03d}/{:03d}, Train-Loss: {:.3f}, Train-Accuracy: {:.2f}%, Valid-Loss: {:.3f}, Valid-Accuracy: {:.2f}% | tau={:.3f} | lr={:.6f}' | ||||
|     print(template.format(time_string(), epoch+1, xargs.epochs, | ||||
|                           train_loss.result(), | ||||
|                           train_accuracy.result()*100, | ||||
|                           valid_loss.result(), | ||||
|                           valid_accuracy.result()*100, | ||||
|                           cur_tau)) | ||||
|                           cur_tau, | ||||
|                           cur_lr)) | ||||
|     print('{:} genotype : {:}\n{:}\n'.format(time_string(), genotype, model.get_np_alphas())) | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|   parser = argparse.ArgumentParser(description='NAS-Bench-201', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|   # training details | ||||
|   parser.add_argument('--epochs'            , type=int  ,   default= 250  ,   help='') | ||||
|   parser.add_argument('--tau_max'           , type=float,   default= 10   ,   help='') | ||||
|   parser.add_argument('--tau_min'           , type=float,   default= 0.1  ,   help='') | ||||
|   parser.add_argument('--w_lr'              , type=float,   default= 0.025,   help='') | ||||
|   parser.add_argument('--w_lr_max'          , type=float,   default= 0.025,   help='') | ||||
|   parser.add_argument('--w_lr_min'          , type=float,   default= 0.001,   help='') | ||||
|   parser.add_argument('--w_weight_decay'    , type=float,   default=0.0005,   help='') | ||||
|   parser.add_argument('--w_momentum'        , type=float,   default= 0.9  ,   help='') | ||||
|   parser.add_argument('--arch_learning_rate', type=float,   default=0.0003,   help='') | ||||
|   | ||||
		Reference in New Issue
	
	Block a user