xautodl/docs/README_CN.md

150 lines
7.1 KiB
Markdown
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<p align="center">
<img src="https://xuanyidong.com/resources/images/AutoDL-log.png" width="400"/>
</p>
---------
[![MIT licensed](https://img.shields.io/badge/license-MIT-brightgreen.svg)](../LICENSE.md)
自动深度学习库 (AutoDL-Projects) 是一个开源的,轻量级的,功能强大的项目。
该项目实现了多种网络结构搜索(NAS)和超参数优化(HPO)算法。
**谁应该考虑使用AutoDL-Projects**
- 想尝试不同AutoDL算法的初学者
- 想调研AutoDL在特定问题上的有效性的工程师
- 想轻松实现和实验新AutoDL算法的研究员
**为什么我们要用AutoDL-Projects**
- 最简化的python依赖库
- 所有算法都在一个代码库下
- 积极地维护
## AutoDL-Projects 能力简述
目前,该项目提供了下列算法和以及对应的运行脚本。请点击每个算法对应的链接看他们的细节描述。
<table>
<tbody>
<tr align="center" valign="bottom">
<th>Type</th>
<th>ABBRV</th>
<th>Algorithms</th>
<th>Description</th>
</tr>
<tr> <!-- (1-st row) -->
<td rowspan="6" align="center" valign="middle" halign="middle"> NAS </td>
<td align="center" valign="middle"> TAS </td>
<td align="center" valign="middle"> <a href="https://arxiv.org/abs/1905.09717">Network Pruning via Transformable Architecture Search</a> </td>
<td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/main/docs/NeurIPS-2019-TAS.md">NeurIPS-2019-TAS.md</a> </td>
</tr>
<tr> <!-- (2-nd row) -->
<td align="center" valign="middle"> DARTS </td>
<td align="center" valign="middle"> <a href="https://arxiv.org/abs/1806.09055">DARTS: Differentiable Architecture Search</a> </td>
<td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/main/docs/ICLR-2019-DARTS.md">ICLR-2019-DARTS.md</a> </td>
</tr>
<tr> <!-- (3-nd row) -->
<td align="center" valign="middle"> GDAS </td>
<td align="center" valign="middle"> <a href="https://arxiv.org/abs/1910.04465">Searching for A Robust Neural Architecture in Four GPU Hours</a> </td>
<td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/main/docs/CVPR-2019-GDAS.md">CVPR-2019-GDAS.md</a> </td>
</tr>
<tr> <!-- (4-rd row) -->
<td align="center" valign="middle"> SETN </td>
<td align="center" valign="middle"> <a href="https://arxiv.org/abs/1910.05733">One-Shot Neural Architecture Search via Self-Evaluated Template Network</a> </td>
<td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/main/docs/ICCV-2019-SETN.md">ICCV-2019-SETN.md</a> </td>
</tr>
<tr> <!-- (5-th row) -->
<td align="center" valign="middle"> NAS-Bench-201 </td>
<td align="center" valign="middle"> <a href="https://openreview.net/forum?id=HJxyZkBKDr"> NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search</a> </td>
<td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/main/docs/NAS-Bench-201.md">NAS-Bench-201.md</a> </td>
</tr>
<tr> <!-- (6-th row) -->
<td align="center" valign="middle"> NATS-Bench </td>
<td align="center" valign="middle"> <a href="https://xuanyidong.com/assets/projects/NATS-Bench"> NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size</a> </td>
<td align="center" valign="middle"> <a href="https://github.com/D-X-Y/NATS-Bench">NATS-Bench.md</a> </td>
</tr>
<tr> <!-- (7-th row) -->
<td align="center" valign="middle"> ... </td>
<td align="center" valign="middle"> ENAS / REA / REINFORCE / BOHB </td>
<td align="center" valign="middle"> Please check the original papers. </td>
<td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/main/docs/NAS-Bench-201.md">NAS-Bench-201.md</a> <a href="https://github.com/D-X-Y/NATS-Bench">NATS-Bench.md</a> </td>
</tr>
<tr> <!-- (start second block) -->
<td rowspan="1" align="center" valign="middle" halign="middle"> HPO </td>
<td align="center" valign="middle"> HPO-CG </td>
<td align="center" valign="middle"> Hyperparameter optimization with approximate gradient </td>
<td align="center" valign="middle"> coming soon </a> </td>
</tr>
<tr> <!-- (start third block) -->
<td rowspan="1" align="center" valign="middle" halign="middle"> Basic </td>
<td align="center" valign="middle"> ResNet </td>
<td align="center" valign="middle"> Deep Learning-based Image Classification </td>
<td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/main/docs/BASELINE.md">BASELINE.md</a> </a> </td>
</tr>
</tbody>
</table>
## 准备工作
请使用`3.6`以上的`Python`更多的Python包参见[requirements.txt](requirements.txt).
请下载并且解压缩`CIFAR`和`ImageNet`到`$TORCH_HOME`.
## 引用
如果您发现该项目对您的科研或工程有帮助,请考虑引用下列的某些文献:
```
@inproceedings{dong2021autohas,
title = {{AutoHAS}: Efficient Hyperparameter and Architecture Search},
author = {Dong, Xuanyi and Tan, Mingxing and Yu, Adams Wei and Peng, Daiyi and Gabrys, Bogdan and Le, Quoc V},
booktitle = {2nd Workshop on Neural Architecture Search at International Conference on Learning Representations (ICLR)},
year = {2021}
}
@article{dong2021nats,
title = {{NATS-Bench}: Benchmarking NAS Algorithms for Architecture Topology and Size},
author = {Dong, Xuanyi and Liu, Lu and Musial, Katarzyna and Gabrys, Bogdan},
doi = {10.1109/TPAMI.2021.3054824},
journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)},
year = {2021},
note = {\mbox{doi}:\url{10.1109/TPAMI.2021.3054824}}
}
@inproceedings{dong2020nasbench201,
title = {{NAS-Bench-201}: Extending the Scope of Reproducible Neural Architecture Search},
author = {Dong, Xuanyi and Yang, Yi},
booktitle = {International Conference on Learning Representations (ICLR)},
url = {https://openreview.net/forum?id=HJxyZkBKDr},
year = {2020}
}
@inproceedings{dong2019tas,
title = {Network Pruning via Transformable Architecture Search},
author = {Dong, Xuanyi and Yang, Yi},
booktitle = {Neural Information Processing Systems (NeurIPS)},
year = {2019}
pages = {760--771},
}
@inproceedings{dong2019one,
title = {One-Shot Neural Architecture Search via Self-Evaluated Template Network},
author = {Dong, Xuanyi and Yang, Yi},
booktitle = {Proceedings of the IEEE International Conference on Computer Vision (ICCV)},
pages = {3681--3690},
year = {2019}
}
@inproceedings{dong2019search,
title = {Searching for A Robust Neural Architecture in Four GPU Hours},
author = {Dong, Xuanyi and Yang, Yi},
booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
pages = {1761--1770},
year = {2019}
}
```
# 其他
如果你想要给这份代码库做贡献,请看[CONTRIBUTING.md](../.github/CONTRIBUTING.md)。
此外,使用规范请参考[CODE-OF-CONDUCT.md](../.github/CODE-OF-CONDUCT.md)。
# 许可证
The entire codebase is under [MIT license](../LICENSE.md)