ddpo-pytorch/ddpo_pytorch/diffusers_patch/ddim_with_logprob.py

193 lines
7.9 KiB
Python
Raw Permalink Normal View History

2023-06-24 04:25:54 +02:00
# Copied from https://github.com/huggingface/diffusers/blob/fc6acb6b97e93d58cb22b5fee52d884d77ce84d8/src/diffusers/schedulers/scheduling_ddim.py
# with the following modifications:
2023-06-24 06:08:32 +02:00
# - It computes and returns the log prob of `prev_sample` given the UNet prediction.
# - Instead of `variance_noise`, it takes `prev_sample` as an optional argument. If `prev_sample` is provided,
# it uses it to compute the log prob.
# - Timesteps can be a batched torch.Tensor.
2023-06-24 04:25:54 +02:00
from typing import Optional, Tuple, Union
import math
import torch
from diffusers.utils import randn_tensor
from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput, DDIMScheduler
2023-06-24 09:07:55 +02:00
def _left_broadcast(t, shape):
assert t.ndim <= len(shape)
return t.reshape(t.shape + (1,) * (len(shape) - t.ndim)).broadcast_to(shape)
2023-06-24 06:08:32 +02:00
def _get_variance(self, timestep, prev_timestep):
2023-11-16 23:36:46 +01:00
alpha_prod_t = torch.gather(self.alphas_cumprod, 0, timestep.cpu()).to(
timestep.device
)
2023-06-24 06:08:32 +02:00
alpha_prod_t_prev = torch.where(
2023-11-16 23:36:46 +01:00
prev_timestep.cpu() >= 0,
self.alphas_cumprod.gather(0, prev_timestep.cpu()),
self.final_alpha_cumprod,
2023-06-24 06:08:32 +02:00
).to(timestep.device)
beta_prod_t = 1 - alpha_prod_t
beta_prod_t_prev = 1 - alpha_prod_t_prev
variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)
return variance
2023-06-24 04:25:54 +02:00
def ddim_step_with_logprob(
self: DDIMScheduler,
model_output: torch.FloatTensor,
timestep: int,
sample: torch.FloatTensor,
eta: float = 0.0,
use_clipped_model_output: bool = False,
generator=None,
prev_sample: Optional[torch.FloatTensor] = None,
) -> Union[DDIMSchedulerOutput, Tuple]:
"""
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
process from the learned model outputs (most often the predicted noise).
Args:
model_output (`torch.FloatTensor`): direct output from learned diffusion model.
timestep (`int`): current discrete timestep in the diffusion chain.
sample (`torch.FloatTensor`):
current instance of sample being created by diffusion process.
eta (`float`): weight of noise for added noise in diffusion step.
use_clipped_model_output (`bool`): if `True`, compute "corrected" `model_output` from the clipped
predicted original sample. Necessary because predicted original sample is clipped to [-1, 1] when
`self.config.clip_sample` is `True`. If no clipping has happened, "corrected" `model_output` would
coincide with the one provided as input and `use_clipped_model_output` will have not effect.
generator: random number generator.
variance_noise (`torch.FloatTensor`): instead of generating noise for the variance using `generator`, we
can directly provide the noise for the variance itself. This is useful for methods such as
CycleDiffusion. (https://arxiv.org/abs/2210.05559)
return_dict (`bool`): option for returning tuple rather than DDIMSchedulerOutput class
Returns:
[`~schedulers.scheduling_utils.DDIMSchedulerOutput`] or `tuple`:
[`~schedulers.scheduling_utils.DDIMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
returning a tuple, the first element is the sample tensor.
"""
assert isinstance(self, DDIMScheduler)
if self.num_inference_steps is None:
raise ValueError(
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
)
# See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
# Ideally, read DDIM paper in-detail understanding
# Notation (<variable name> -> <name in paper>
# - pred_noise_t -> e_theta(x_t, t)
# - pred_original_sample -> f_theta(x_t, t) or x_0
# - std_dev_t -> sigma_t
# - eta -> η
# - pred_sample_direction -> "direction pointing to x_t"
# - pred_prev_sample -> "x_t-1"
# 1. get previous step value (=t-1)
2023-11-16 23:36:46 +01:00
prev_timestep = (
timestep - self.config.num_train_timesteps // self.num_inference_steps
)
2023-06-24 09:07:55 +02:00
# to prevent OOB on gather
2023-06-24 06:08:32 +02:00
prev_timestep = torch.clamp(prev_timestep, 0, self.config.num_train_timesteps - 1)
2023-06-24 04:25:54 +02:00
# 2. compute alphas, betas
2023-06-24 09:07:55 +02:00
alpha_prod_t = self.alphas_cumprod.gather(0, timestep.cpu())
2023-06-24 06:08:32 +02:00
alpha_prod_t_prev = torch.where(
2023-11-16 23:36:46 +01:00
prev_timestep.cpu() >= 0,
self.alphas_cumprod.gather(0, prev_timestep.cpu()),
self.final_alpha_cumprod,
2023-06-24 09:07:55 +02:00
)
alpha_prod_t = _left_broadcast(alpha_prod_t, sample.shape).to(sample.device)
2023-11-16 23:36:46 +01:00
alpha_prod_t_prev = _left_broadcast(alpha_prod_t_prev, sample.shape).to(
sample.device
)
2023-06-24 04:25:54 +02:00
beta_prod_t = 1 - alpha_prod_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
if self.config.prediction_type == "epsilon":
2023-11-16 23:36:46 +01:00
pred_original_sample = (
sample - beta_prod_t ** (0.5) * model_output
) / alpha_prod_t ** (0.5)
2023-06-24 04:25:54 +02:00
pred_epsilon = model_output
elif self.config.prediction_type == "sample":
pred_original_sample = model_output
2023-11-16 23:36:46 +01:00
pred_epsilon = (
sample - alpha_prod_t ** (0.5) * pred_original_sample
) / beta_prod_t ** (0.5)
2023-06-24 04:25:54 +02:00
elif self.config.prediction_type == "v_prediction":
2023-11-16 23:36:46 +01:00
pred_original_sample = (alpha_prod_t**0.5) * sample - (
beta_prod_t**0.5
) * model_output
pred_epsilon = (alpha_prod_t**0.5) * model_output + (
beta_prod_t**0.5
) * sample
2023-06-24 04:25:54 +02:00
else:
raise ValueError(
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
" `v_prediction`"
)
# 4. Clip or threshold "predicted x_0"
if self.config.thresholding:
pred_original_sample = self._threshold_sample(pred_original_sample)
elif self.config.clip_sample:
pred_original_sample = pred_original_sample.clamp(
-self.config.clip_sample_range, self.config.clip_sample_range
)
# 5. compute variance: "sigma_t(η)" -> see formula (16)
# σ_t = sqrt((1 α_t1)/(1 α_t)) * sqrt(1 α_t/α_t1)
2023-06-24 06:08:32 +02:00
variance = _get_variance(self, timestep, prev_timestep)
2023-06-24 04:25:54 +02:00
std_dev_t = eta * variance ** (0.5)
2023-06-24 09:07:55 +02:00
std_dev_t = _left_broadcast(std_dev_t, sample.shape).to(sample.device)
2023-06-24 04:25:54 +02:00
if use_clipped_model_output:
# the pred_epsilon is always re-derived from the clipped x_0 in Glide
2023-11-16 23:36:46 +01:00
pred_epsilon = (
sample - alpha_prod_t ** (0.5) * pred_original_sample
) / beta_prod_t ** (0.5)
2023-06-24 04:25:54 +02:00
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
2023-11-16 23:36:46 +01:00
pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (
0.5
) * pred_epsilon
2023-06-24 04:25:54 +02:00
# 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
2023-11-16 23:36:46 +01:00
prev_sample_mean = (
alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
)
2023-06-24 04:25:54 +02:00
if prev_sample is not None and generator is not None:
raise ValueError(
"Cannot pass both generator and prev_sample. Please make sure that either `generator` or"
" `prev_sample` stays `None`."
)
if prev_sample is None:
variance_noise = randn_tensor(
2023-11-16 23:36:46 +01:00
model_output.shape,
generator=generator,
device=model_output.device,
dtype=model_output.dtype,
2023-06-24 04:25:54 +02:00
)
prev_sample = prev_sample_mean + std_dev_t * variance_noise
# log prob of prev_sample given prev_sample_mean and std_dev_t
log_prob = (
-((prev_sample.detach() - prev_sample_mean) ** 2) / (2 * (std_dev_t**2))
- torch.log(std_dev_t)
- torch.log(torch.sqrt(2 * torch.as_tensor(math.pi)))
)
# mean along all but batch dimension
log_prob = log_prob.mean(dim=tuple(range(1, log_prob.ndim)))
2023-06-24 09:07:55 +02:00
return prev_sample.type(sample.dtype), log_prob